J. Chem. En. Sci. A.

Synthesis, Characterization and Biological Evaluation of Some Novel Chalcone Derivatives Containing Imidazo[1,2-a]Pyridine Moiety

Rajesh G. Rupala, Dinesh S. Kundariya and Praful K. Patel

  • Download PDF
  • DOI Number
    https://doi.org/10.15415/jce.2014.11003 
KEYWORDS

Chalcone, arylmethyl ketone, arylaldehyde, antimicrobial.

PUBLISHED DATE September 2014
PUBLISHER The Author(s) 2014. This article is published with open access at www.chitkara.edu.in/publications
ABSTRACT

Chalcone was prepared by the condensation of arylmethyl ketone and arylaldehyde in the presence of alcoholic alkali. Present study describes the synthesis of a series of (2z)-3-[2-(4-chlorophenyl)-8-methyl imidazo[1,2-a] pyridine-3-yl]-1-substituted arylprop-2-en-1-one compounds (h) 1-9. The compounds were characterized by modern analytical techniques such as CHN analyses, IR, 1H NMR spectra and further supported by mass spectroscopy. All the title compounds were screened for their in vitro antibacterial and antifungal activity against B.coccus, S.aureus, Pseudomona, E.coli, A.niger, Ampicillin, Amoxicillin, Ciprofloxacin, Norfloxacin, Greseofulvin. Their minimum inhibitory concentrations (MIC) were determined. The results of antibacterial activity showed that compounds h 4, h 9 and antifungal activity compounds h 1, h 9 using standard drug.

INTRODUCTION

The chemistry of chalcones have generated intensive scientific studies throughout the world, specially interesting are their biological and industrial applications. Chalcones are coloured compounds because of presence of the chromophore and auxochromes. They are known as benzalacetophenones or benzylidene acetophenones. Kostanecki and Tambor (1899) gave the name “Chalcone”. Chalcones are characterized by their possession of a structure in which two aromatic ring are linked by an aliphatic three carbon chain. The alternative names given to chalcones are phenyl styryl ketones, benzalacetophenone-phenyl acrylphenone, γ-oxo-α-diphenyl-αpropylene and α-phenyl-β-benzoethylene.

A considerable variety of methods are available for the synthesis of chalcones. The most convenient method is the one that involves the Claisenschimdt condensation of equimolar quantities of an arylmethyl ketone with arylaldehyde in the presence of alcoholic alkali. (Kazauki et al., 1976). Several condensing agents used are alkali of different strength (Rupe and Wasserzug, 1901; Szell, 1959) hydrogen chloride (Lyle and Paradis, 1955; Hemes, 1969), phosphorous oxychloride (Rawal and Shah, 1962), piperidine (Cheng et al., 1963), anhydrous aluminium chloride (Kurodo and Matsukuma, 1932), boron trifluoride (Breslow and Houser, 1940), aq.solution of borax (Jadav and Kulkarni, 1944), amino acids (Reichel, 1944), and perchloric acid (Vlasov, 1972) etc

Chalcones are potential biocides, some naturally occurring antibiotics and amino chalcones probably own their biological activity to the presence of α, β - unsaturated carbonyl group. Chalcone derivatives are associated with diverse biological activity. Antiallergic (Ogansyan et al., 1991), Carboxygenase inhibitir (Satoshi et al., 1993), Antitumor (Satomi. 1993, 1994; Auto et al., 1994, 1995), Antimalarial (Li et al., 1995, 1996), Anticancer (Zongru and Rui, 1996), Insecticidal (Nissan Chemical Industries, 1983; Seele R. et al., 1989, 1990), Antiulcer (Tashio Pharmaceutical Co. Ltd., 1984), Antiinflammatory (Serre et al., 1979; Vanstone et al., 1986, 1987), 9. Bactericidal (Bowden et al., 1990, 1991; Inamori et al., 1991, 1991), 10. fungicidal (Gaurav and Ingle, 1986, 1987; Pedersen and Fitz Gerald, 1985), 11. antiviral (Binder et al., 1985), 12. Anthelmintics (Bell, 1984, 1990).

Recently, Ni Liming et al., (2002, 2003) have synthesized chalcones and screened for their antiinflammatory and cardiovascular activity. Kumar Srinivas et al. (2003) have synthesized chalcones as an antitumor agent. Ko horng-Huey et al. (2003) have prepared chalcones as an antiinflammatory agent. Nakahara Kazuhiko et al. (2003, 2003) have synthesized chalcones as carcinogen inhibitors. Antitubercular agents of chalcone derivatives have been prepared by Lin Yuh-Meei et al. (2002, 2003) Ezico et al. (1999) have demonstrated that chalcone possess a valuable anti-proliferation activity both on sensitive cancereous cell and on cell which are resistant to common chemotherapeutic drugs. Some of the chalcones have been patented for their use for treatment of glueoma (Elichi and Koji, 2000) and showed anti-fungal (Kalashnikov and Kalashnikov, 1994; Satoshi et al., 1993, 1994) aldose reductase inhibitors (Walavalkar and Pednekar, 1999), anticancer (Toru et al., 2000) and antimicrobial (Dimmock and Elisk, 2000;Abdet Rahman, 1998) activities.

Page(s) 23-32
URL http://dspace.chitkara.edu.in/jspui/bitstream/1/516/3/11003_JCE_Rajesh.pdf
ISSN Print : 2349-7564, Online : 2349-7769
DOI https://doi.org/10.15415/jce.2014.11003 
CONCLUSION

Present study describes the synthesis of a series of (2z)-3-[2-(4-chlorophenyl)8-methyl imidazo[1,2-a]pyridine-3-yl]-1-substituted arylprop-2- en-1-one. The compounds were characterized by modern analytical techniques such as C, H, N analyses, IR, Mass and proton NMR spectra. All the title compounds were screened for their in vitro antibacterial and antifungal activity against B.coccus, S.aureus, Pseudomona, E.coli, A.niger, Ampicillin, Amoxicillin, Ciprofloxacin, Norfloxacin, Greseofulvin. Their minimum inhibitory concentrations (MIC) were determined. The results of antibacterial activity showed that compounds h 4, h 9 and antifungal activity compounds h 1, h 9 using standard drug.

REFERENCES
  • Abdet Rahman, T. N. (1998) Bull. Chim. Farm.; (2000) Chem. Abstr., 132, 93276h.
  • Auto, R. J. et al.(1994) J. Clin. Biochem. Nutr., 17(2), 73; (1995) Chem. Abstr., 123, 122487x.
  • Bell, M. R. (1984) US Appl., 637, 931 ; (1990) Chem. Abstr., 113, 211828t.
  • Binder, D., Noe, C. R., Holzer, W. and Rosenwirth, B. (1985) Arch. Pharm. 318(1), 48; (1985) Chem. Abstr., 102, 149025u.
  • Bombardelli, E., Piero, V. (1999) PCT Int. Appl. WO 98, 58, 913; Chem. Abstr., 130, 95382r.
  • Bowden, K., P., Dal, P. A. and Shah, C. K. (1990) J. Med. Res. Synop., 12, 2801; (1991) Chem. Abstr., 114, 160570m.
  • Breslow, D. S. and Houser, C. R. (1940) J. American Chem. Soc., 62, 2385; Chem. Abstr., 34, 7875.
  • Cheng, P. L., Fournari, P. and Tirouflet, J. (1963) Bull. Soc. Chim. France, 102248; (1964) Chem Abstr., 60, 1683.
  • Dimmock, J. R., Elisk, M., U. S. US 6, 017, 933; (2000) Chem. Abstr., 132, 107880n.
  • Gaurav, V. M. and Ingle, D. B (1986) Indian J. Chem., 25B, 86; (1987) Chem. Abstr., 107, 3932h.
  • Hemes, S. A. (1969) Chem Abstr., 70, 96422h.
  • Inamori, Y. et al. (1991) Chem. Pharm. Bull., 39(6), 1604; (1991) Chem. Abstr., 115, 105547c.
  • Jadav, G. V. and Kulkarni, V. G. (1944) Curr. Sci.
  • Kalashnikov, B. B., Kalashnikov, I. P. (1994) Chem. Abstr., 130, 296596n.
  • Kazauki, K., Htayama, K., Yokomor, S. and Soki, T. (1976) Chem Abstr., 85, 5913.
  • Ko Horng-Huey, Tsao Lo- Ti, Yo Kum- Lung, Cheng-Tsung, Wong J. P., Lin C. N. (2003)
  • Bioorg. & Med. Chem., 11(1), 105-111; (2003) Chem. Abstr., 139, 30144.
  • Kostanecki, S. V. and Tambor, J. (1899) Chem. Ber., 32, 1921.
  • Kumar Srinivas, K., Hanger, E., Pehit, C., Gurulingoppal, H., Davidson, N. E., Khan, S. R. (2003) J. Med. Chem., 46(14), 2813-15; (2003) Chem. Abstr., 139, 117464.
  • Kurodo, C. and Matsukuma, T. (1932) Sci. Papers Inst. Phys. Chem. Res. (Tokyo), 18, 51; (1932) Chem. Abstr., 26, 2442.
  • Li Rongshi, Chen. Xiawa., Gong Baogung, Qominguez, Jose N. et al (1995) J. Med. Chem., 38(26), 5031-7; (1996) Chem. Abstr., 124, 232f.
  • Lin Yuh-Meei, Zhou Yasheen, Flavin M. T. Zhou L. M. Nie, W., Cheng, F. C. (2002) Bioorg. & Med. Chem., 10(8), 2795-2802; (2003) Chem. Abstr., 138, 66146.
  • Lyle, R. B. and Paradis, L. P. (1955) J. American Chem. Soc., 77, 6667; (1956) Chem Abstr., 50, 10057.
  • Nakahara Kazuhiko, Torakoontiwakon G., Kaneyama M. , Ono Hiroshi, Yoshida Mitsuru (2003)
  • Jpn. Kokai Tokkyo Koho JP 03, 040829; (2003) Chem. Abstr., 138, 158753.
  • Ni Liming, Worsencrott, K. J., Weingarten, M. D., Meng. C. Q., Sikorski, J. A. (2002) U. S. US. WO. 02, 41336; (2003) Chem. Abstr., 139, 85160.
  • Nissan Chemical Industries (1983) Chem. Abstr., 98, 178947a.
  • Ogansyan, E. T. et al (1991) Khim. Farm. Zh., 25(8), 18; (1991) Chem. Abstr., 115, 247497n.
  • Pedersen, A. K. and Fitz Gerald, G. A. (1985) J. Pharm. Sci., 74(2), 188; (1985) Chem. Abstr.,103, 87592m.
  • Rawal, A. A. and Shah, N. M (1962) Indian J. Chem., 21, 234.
  • Reichel, L. (1944) Naturwissenschallen, 32, 215; (1946) Chem. Abstr., 10, 2441.
  • Rupe, H. and Wasserzug, D. (1901) Chem Ber., 34, 3527.
  • S. Elichi, S., K. Koji, K. (2000) PCT Int. Appl. WO 99, 61, 403 ; Chem. Abstr., 132, 12199d.
  • Satoshi, S., Yasunori, N., Hiroki, V. (1993) J. Med. Chem., 3904-9 (Eng.); (1994) Chem. Abstr., 120,