CO to CO2 Using Magnesium Based Catalysts: An Overview

Authors

  • Gaurav Rattan Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology Panjab university Chandigarh-160014, India
  • Maninder Kumar Dr. S.S. Bhatnagar university institute of Chemical Engineering and technology Panjab university Chandigarh-160014, India
  • Meenakshi Sheoran Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology Panjab university Chandigarh-160014, India

DOI:

https://doi.org/10.15415/jce.2015.21002

Keywords:

CO, oxidation, Magnesium, Catalyst, Support, review, Automobile exhaust

Abstract

Stringent environmental re gulations have been adopted by the government in order to decrease the emission of vehicular exhaust such as S o x, N o x, C o and unb urned hydrocarbons. t herefore, the de velopment and exploration of catalysts started in the last century for the oxidation of carbon monoxide by different methods have attracted many researchers. t herefore, lar ge number of catalysts have been modified and tested for C o oxidation. t he de veloped catalysts have the ability of 100% conversion. Keeping in view of the literature accumulated in the last few decades for C o oxidation, Magnesium based catalysts ha ve been reported by many scientists for C o oxidation due to its unique characteristics such as high catalytic performance at low temperatures and good durability and stability toward C o oxidation. t his article represents a short re view in tabular form which facilitates a quick view on compounds that have been reported with magnesium previously.

Downloads

Download data is not yet available.

References

Farrauto, R.J., Heck, R.M. Automobile exhaust catalysts. Applied Catalysis A: General, 221, 443-457 (2001).

Brugge, D., Durant., J.L., Rioux, C. Near-highway pollutants in motor vehicle exhaust: A review of epidemiologic evidence of cardiac and pulmonary health risks.Environmental health, 6, 23 (2007).

Kumar, G., Mohan, S., Sampath, V., Jeena, S., et al. Carbon Monoxide Pollution Levels at Environmentally different Sites.J. Ind. Geophys. Union,12 (1), 31-40 (2008).

Gallopoulos, N., SAE, 92072 (1992).

Kaiser, E.W., Siegel, W.O., Baidar, L.M., Lawson, S.P., Cramer, C.F., Dobbins, K.L., Roth, P., Smokovitz, M., SAE, 94063 (1994).

Boam, D.J., Clark, T.A., Hobbs, K.E., SAE, 950930 (1995).

Wojciechowska, M., Haber, J., Ski, M.Z., Przystajkob, W., Effect of MgF2 and Al2o3supports on the structure and catalytic activity of copper–manganese oxide catalysts. Catalysis Letters, 113, 46-53 (2007).

Derekaya, F.B., Güldür, Ç. Activity and selectivity of Co oxidation in H2 rich stream over the Ag/Co/Ce mixed oxide catalysts. International journal of hydrogen energy, 35, 2247-2261(2010).

Klauer, F., Paper presented at 1967 Mine rescue superintendents Conference (National Coal Board), Published by the Auergesellschaft GMBH, Berlin (1967).

Yoon, C., Cocke, D. L., Characterisation of copper-manganese oxide catalysts: effect of precipitate ageing upon the structure and morphology of precursors and catalyst. Appl. Surf. Sci., 31, 118-150 (1988).

Porta, P., Ciambelli, P., Cimino, S., Rossi, D., Lisi, L., Minelli, G., Russo, G., A Feo3(A=La, Nd, Sm) and LaFe1−xMgxo3 perovskites as methane combustion and Cooxidation catalysts: structural, redox and catalytic properties. Applied Catalysis B: Environmental, 29, 239-250 (2001).

Strizhak, P.E., Didenko, O.Z., Kosmambetova, G.R., Size effect in Co oxidation over magnesia-supported ZnO nanoparticles. Journal of Molecular Catalysis A: Chemical, 335, 14-23 (2011).

Goslar, J., Wojciechowska, M., Zielinski, M., Foralewska, i.t. Przystajko, W., Structure Characterization and Catalytic Properties of Cr2o3 doped with MgoSupported on MgF2. Acta Physica Polnica A, 108, 2, 24-28 (2005).

Manriquez, M.E., Lopez T., Gomez, R., Cooxidation on Cu/MgO-Sio2 Sol-Gel derived Catalysts. Journal of Sol-Gel Science and Technology, 26, 853-857 (2003).

Gao, F., Dong, L., Yu, Q., Wu, X., Tang, C., Qi, L., Liu, B., Sun, K., Chen, Y., textural, structural, and morphological characterizations and catalytic activity of nanosized Ceo2–Mox (M = Mg2+, Al3+, Si4+) mixed oxides for Co oxidation. Journal of Colloid and Interface Science, 354, 341-352 (2011).

Brown, H et al. Catalysts for oxidation of carbon monoxide. u.S. Patent 4,943,550, issued July 24, 1990.

Grunwaldt, J. D., Teuissen, H., Process for the catalytic oxidation of carbonaceous compounds. u.S. Patent 6,692,713, issued February 17, 2004.

Ghaffari, A., Shamekhi, A. H., Saki, A., Kamrani, E., Adaptive fuzzy control for air-fuel ratio of automobile spark ignition engine.World Academy of Science, Engineering and Technology48, 284-292 (2008).

Henein, N.A., Tagomori, M.K., Cold-start hydrocarbon emissions in port-injected gasoline engine. Progress in Energy and Combustion Science, 25, 563-593 (1999).

Callan & Company. Callan & Co. Ltd.: Scottsdale, AZ. http://hazmatcentral.com (2001).

Bray, W.C., Lamb, A.B., Frazer, J.C.W. the removal of carbon monoxide from air. The journals of industrial and engineering chemistry, 1920, 12, 213-221.

Takeda, K., Yaegashi, t., Sekiguchi, K., Saito, K., SAE, 950074 (1995).

Woodley, J.M., Pollard, D.J., Biocatalysis for pharmaceutical intermediates: The future is now. Trends in biochemistry, 25, 66-73 (2007).

Wang, J., Shu, Q., Zhang, Q., Xu, G., Nawaz, Z., Wang, d., Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Processing Technology, 90, 1002-1008 (2009).

Cohn, G., Process for selectively removing carbon monoxide from hydrogen-containing gases. US Patent No. 3, 216(1963) 783. (1963)

Wojciechowska, M., Przystajko, W., Zielin ́ski, M., Co oxidation catalysts based on copper and manganese or cobalt oxides supported on MgF2 and Al2o3.Catalysis Today, 119, 338-341(2007).

Chen, Y.W., Chen, H.J., Lee, D.S., Au/Co3o4–tio2 catalysts for preferential oxidation of Co in H2 stream. Journal of Molecular Catalysis A: Chemical, 363–364, 470– 480(2012).

Becker, C., Henry, C.R., Cluster size dependent kinetics for the oxidation of Co on a Pd/MgO (100) model catalyst. Surface Science, 352-354, 457-462 (1996).

Kim, S.H.K., Cho, S.H.C., Park, J.S., Choi, S.H., Lee, S.K., Effect of water vapour on carbon monoxide oxidation over promoted platinum catalysts. Catalysis Letters, 103, 257-261 (2005).

Arnby, K., Törncrona, A., Skoglundh, M., influence of ammonia on Co and methanol oxidation over Pt/γAl2o3 catalysts modified by Mg. Applied Catalysis B: Environmental, 49, 51-59 (2004).

Carabineiro, S.A.C., Bogdanchikova, N., Pestryakov, A., Tavares, P.B., Fernandes, L.S.G., Figueiredo, J.L., Gold nanoparticles supported on magnesium oxide for Cooxidation. Nanoscale Research Letters, 6, 435 (2011).

Chen, Y.Z., Chang, C.T., Liaw, B.J., Chen, Y.P., Characteristics of Au/MgxAlohydrotalcite catalysts in Co selective oxidation. Journal of Molecular Catalysis A: Chemical, 300, 80-88 (2009).

Pitchon, V., Dobrosz, I., Jiratova, K., Rynkowski, J.M., Effect of the preparation of supported gold particles on the catalytic activity in Co oxidation reaction. Journal of Molecular Catalysis A: Chemical, 234, 187-197 (2005).

Chu, W., Luo, H.X.J.L., Zhang, T., impacts of MgO promoter and preparation procedure on meso-silica supported nano gold catalysts for carbon monoxide total oxidation at low temperature. Chemical Engineering Journal, 170, 419-423 (2011).

Foralewska, I.T., Przystajko, W., Pietrowski, M., Zielinski, M., Wojciechowski, M., Effect of MgO content in the support of Au/MgF2–Mgo catalysts on Co oxidation. Reac. Kinet. Mech. Cat., 100, 111-121 (2010).

Foralewska, I.T., Ski, M.Z., Pietrowski, M., Przystajko, W., Wojciechowska, M., iridium supported on MgF2–Mgo as catalyst for Co oxidation. Catalysis Today, 176, 263-266 (2011).

Xul, H., Shuyong, W., Chunrong, S.Y., influence of MgO contents on silica-supported nano-size gold catalyst for carbon monoxide total oxidation. Journal of Natural Gas Chemistry, 20, 498-502 (2011).

Musick, J.K., Williams, F.W., Catalytic decomposition of halogenated hydrocarbons over hopcalite Catalyst. Ind. Eng. Chem., Prod. Res., 13, 175-179 (1974).

Mirzaei, A.A., Shaterian, H.R., Habibi, M., Hutchings, G.S., Taylor, S.H., Characterisation of copper-manganese oxide catalysts: effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Appl. Catal. A: Gen., 253, 499-508 (2003).

Zimowska, M., Zym, A.M., Janik, R., Machej, T., Gurgul, J., Socha, R.P., Podobinski, J., Serwicka, E.M., Catalytic combustion of toluene over mixed Cu–Mn oxides. Catalysis Today, 119, 321-326 (2007).

Strizhal, P.E., Demidenko, O.Z., Kosmambetova, G.R., Synthesis of Nanosized ZnO/MgoSolid and its Catalytic Activity for Cooxidation. Chin. J. Catal., 29, 1079-1083, 2008.

Wojciechowska, M., Foralewska, I.T., Przystajko, W., Zielinski, M., Catalytic properties of Cr2O3 doped with MgO supported on MgF2 and Al2o3. Catalysis Letters, 104, 3-4 (2005).

Kalchuk, N.S., Strizhak, P.E., Kosmambetova, G.R., Didenko, O.Z., Effect of the means of preparation of nanodispersed CuO/MgO catalysts on their activity in the oxidation of Co. Theoretical and Experimental Chemistry, 44, 3 (2008).

Rida, K., Benabbas, A., Bouremmad, F., Pen, M.A., influence of the synthesis method on structural properties and catalytic activity for oxidation of Co and C3H6 of pirochromite MgCr2o4. Applied Catalysis A: General, 375, 101-106(2010).

Shobaky, G.A.E., Deraz, N.A.M., Surface and catalytic properties of cobaltic oxide supported on an active magnesia. Materials Letters, 47, 231-240 (2001).

Ilyina, V.E., Mishakov, V.i., Vedyagin, A.A., Bedilo, F.A., Aerogel method for preparation of nanocrystalline Coox_Mgo and Vox_Mgo catalysts. J Sol-Gel Sci Technol, 68, 423-428 (2013).

Mokhtar, M., Basahel, S.N., Angary, Y.O.A., Nanosized spinel oxide catalysts for Co-oxidation prepared via CoMnMgAl quaternary hydrotalcite route. Journal of Alloys and Compounds, 493, 376-384 (2010).

Haruta, M., Nanoparticulate Gold Catalysts for Low-temperature Cooxidation. Journal of New Materials for Electrochemical Systems, 7, 163-172(2004).

Haruta, M., Cunningham, d.A.h., Vogel, W., Negative activation energies in Cooxidation over an icosahedral Au/Mg(oh)2 catalyst. Catalysis Letters, 63, 43-47(1999).

Haruta, M., Bamwenda, G.R., Tsubota, S., Nakamura, T., The influence of the preparation methods on the catalytic activity of platinum and gold supported on tio2for Co oxidation. Catalysis Letters, 44, 83-87(1997).

Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journals of catalysis, 115, 291-317(1989).

Haruta, M., Size and support dependency in the catalysis of gold, Catalysis Today, 36, 153-166(1997).

Zecchina, A., Lofthouse, M.G., Stone, F.S., reflectance Spectra of Surface States in Magnesium oxide and Calcium oxide. J. Chem. Soc. Faraday Trans.i, 71, 1476-1490(1975).

Coluccia, S., tench, A.J., Proc. 7th int. Congr. Catalysis, Tokyo, 1980 (Kodansha/Elsevier, Tokyo/Amsterdam, 1981) p. 1154, 1980.

Garrone, E., Stone, F.S., 8th int. Congr. Catalysis, Berlin, vol. 3 (1984) 441.

Chen, Y.Z., Chang, C.T., Liaw, B.J., Huang, C.T., Preparation of Au/MgxAlohydrotalcite catalysts for Co oxidation. Applied Catalysis A: General, 332, 216-224(2007).

Pirogova, G.N., Panich, N.M., Korostelev, R.L., Voronin, Y.E., Popov, N.N., regularities of formation and catalytic properties of cobaltites in the oxidation of Co and hydrocarbons and in the reduction of Nitrogen oxides. Russian Chemical Bulletin, International Edition, 49, 9, 1547-1550(2000).

Cimino, A., Gazzoli, D., Indovina, V., Moretti, G., Occhiuzzi, M., Pepe, F., high and low surface area Nio–Mgo and Coo–Mgo solid solutions: a study of XPS surface composition and Co oxidation activity. Topics in Catalysis, 8, 171-178 (1999).

Lavenson, D., The Stability and Catalytic reactivity of Colloidal Palladium Nanoparticles on Al2o3Supports. research Accomplishments, Materials, University of New Mexico, (2006).

Cunningham, D.A.H., Vogel, W., Haruta, M., Negative activation energies in Cooxidation over an icosahedral Au/Mg(oh)2 catalyst. Catalysis Letters, 63, 43-47(1999).

Grzybowska, G., Gasior, B., Samson, K., Ruszel, M., Haber, J., oxidation of Co and C3 hydrocarbons on gold dispersed on oxide supports. Catalysis Today, 91–92, 131-135(2004).

Yuan, Z.Y., Cao, J.L., Shao, G.S., Wang, Y., Liu, Y., Cuo catalysts supported on attapulgite clay for low-temperature Co oxidation. Catalysis Communications, 9, 2555-2559 (2008).

Haruta, M., Okumura, M., Tsubota, S., Preparation of supported gold catalysts by gas-phase grafting of gold acetylacetonate for low-temperature oxidation of Co and of h2. Journal of Molecular Catalysis A: Chemical, 199, 73-84 (2003).

Eyubova, S.M., Yagodovskii, V.D., the oxidation of Carbon Monoxide on a Catalyst with a Spinel Structure Containing Mg Ferrite. Russian Journal of Physical Chemistry A, 81, 544-548 (2007).

Bhargava, A., Alarco, J., Mackinnon, I., Page, d., Ilyushechkin, A., Synthesis and characterisation of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2o8. Mater. Lett., 34, 133-142, (1998).

Klabunde, K., Nanoscale Materials in Chemistry, Wiley Interscience, (2001).

Garcia, M.F., Arias, A.M., Hanson, J.C., Rodriguez, J.A., Nanostructured oxides in Chemistry: Characterization and Properties. Chemical Reviews, 104, 4063(2004).

Prasad, R., Rattan, G., Preparation Methods and Applications of Cuo-Ceo2 Catalysts: A Short review. Bulletin of Chemical Reaction Engineering & Catalysis, 5, 7-30(2010).

Shobaky, H.G.E., Fahmy, Y.M., Nickel cuprate supported on cordierite as an active catalyst for Co oxidation by O2. Applied Catalysis B: Environmental, 63, 168-177(2006).

Molla, S.A.E., Shobaky, G.A.E., Fahmy, Y.M., Shobaky, H.G.E., Catalytic Conversion of isopropanol and Cooxidation in Presence of Nio Supported on Modified Cordierite. The Open Catalysis Journal, 4, 9-17(2011).

Henry, C.R., Piccolo, L., Becker, C., Reaction between Co and a pre-adsorbed oxygen layer on supported palladium clusters. Applied Surface Science, 164, 156-162 (2000).

Miyake, T., Matsuda, E., Tanaka, S., Koike, K., Tanaka, A., Sano, M., Synthesis of one-dimensional microporous todorokite and its catalytic activity in Co oxidation. Research on Chemical Intermediates, 34, 535-549 (2008).

Schuth, F., Jia, C.J., Liu, Y., Bongard, H., Very Low-temperature Cooxidation over Colloidally deposited Gold Nanoparticles on Mg (oh)2 and MgO. J. AM, Chem. Soc., 9, 132, 1520-1522 (2010).

Yakimova, M.S., Ivanov, V.K., Polezhaeva, O.S., Trushin, A.A., Lermontov, A.S., Tretyakov, Y.D., oxidation of Co on nanocrystalline ceria promoted by transition metal oxides. ISSN 0012-5008, Doklady Chemistry, 427, 186–189 (2009).

Schüth, F., Jia, C.J., Yong, L., Schwickardi, M., Weidenthaler, C., Spliethoff, B., Schmidt, W., Small gold particles supported on MgFe2o4 nanocrystals as novel catalyst for Co oxidation. Applied Catalysis A: General, 386, 94-100(2010).

Margitfalvi, J.L., Heged, M.S., Szegedi, A., Sajó, I., Modification of Au/MgO catalysts used in low-temperature Co oxidation with Mn and Fe. Applied Catalysis A: General, 272, 87-97 (2004).

Fattah, Z., Rezaei, M., Biabani-ravandi, A., & Irankhah, A. Preparation of Co–Mgo mixed oxide nanocatalysts for low-temperature Co oxidation: optimization of preparation conditions.Process Safety and Environmental Protection, (2013).

Downloads

Published

2015-09-30

How to Cite

Gaurav Rattan, Maninder Kumar, & Meenakshi Sheoran. (2015). CO to CO2 Using Magnesium Based Catalysts: An Overview. Journal of Chemistry, Environmental Sciences and Its Applications, 2(1), 19–40. https://doi.org/10.15415/jce.2015.21002

Issue

Section

Articles