Sustainable Practices Improving the University Campus: Feasibility of A Photovoltaic System

Authors

  • Jandira Menezes Postgraduate Program in Technologies for Sustainable Development, CAP, Federal University of São João del-Rei, Brazil
  • J.C. Cury Postgraduate Program in Technologies for Sustainable Development, CAP, Federal University of São João del-Rei, Brazil; Faculty of Pharmaceutical, Food and Nutrition Sciences, Federal University of Mato Grosso do Sul, Brazil
  • L.M. Souza Department of Exact and Biological Sciences, CSL, Federal University of São João del-Rei, Brazil

DOI:

https://doi.org/10.15415/jce.2021.72006

Keywords:

Sustainability, Electricity, Photovoltaic, Conservation, University

Abstract

This article aimed to discuss the principles of sustainability applied to the built environment, highlighting the importance of universities as replicators of these practices. To respond to a demand from the campus for more security in the energy supply, the work proposes the implementation of a solar photovoltaic energy system. For this, it carried out an economic viability analysis through bibliographic review activities, characterization of the study area, dimensioning of photovoltaic systems, budgets, cost analysis and payback calculation. The research evaluated the system’s implementation considering two energy demands, for the entire campus and for a smaller building. It was found that the CSL-UFSJ consumes, on average, 27,300.38 kWh, at a cost of US$ 2,736. Thus, an annual savings of US$ 32,833 is calculated. The cost estimate analyzes showed a value of US$ 139,784 for the implementation of the system. The return on investment time was  calculated for 4.3 and 4.9 years considering simple and discounted Payback respectively.It is estimated that the consumption of the DECEB building is 13,187.1 kWh with a cost of US$ 1,322 per month, which results in an annual savings of US$ 15,860. The cost estimate analyzes showed a value of US$ 40.601 for the implementation of the system and values of 4.3 and 4.9 years were obtained as return on investment time considering the calculations for simple and discounted Payback, respectively. The research demonstrates that the implementation of the photovoltaic solar energy generation system is feasible for both cases analyzed. 

Downloads

Download data is not yet available.

References

Agência Nacional de Energia Elétrica (2018). Matriz de Energia Elétrica. ANEEL, Brasília. Retrieved on December 05, 2018 from https://www.aneel.gov.br.

Bandarin, F., Hosagrahar, J., & Aalbernaz, F. (2011). Why developtment needs culture. Journal of Cultural Heritage Management and Sustainable Development, 1(1), 15-25. https://doi.org/10.1108/20441261111129906

Banco Central do Brasil. (2021) Oficial Page, Dados diários. Retrieved on February 14, 2021 from https://www.bcb.gov.br/estabilidadefinanceira/selicdadosdiarios

Bizerril, M., Rosa, M., & Carvalho, T. (2018). Construindo uma universidade sustentável: uma discussão baseada no caso de uma universidade portuguesa. Avaliação (Campinas), 23(2), 424-447. https://doi.org/10.1590/s1414-40772018000200009

Buonomano, A., Forzano, C., Kalogirou, S., & Palombo, A. (2019). Building-façade integrated solar thermal collectors: Energy-economic performance and indoor comfort simulation model of a water-based prototype for heating, cooling, and DHW production. Renewable Energy, 137, 20-36. https://doi.org/10.1016/j.renene.2018.01.059

Castanheira, G., & Bragança, L. (2014). The Evolution of the Sustainability Assessment Tool SB Tool PT: From Buildings to the Built Environment. 2014, 10. https://doi.org/10.1155/2014/491791

Centro de Referência para as Energias Solar e Eólica. (2014). Manual de engenharia para sistemas fotovoltaicos. CRESESB, Rio de Janeiro, RJ.

Centro de Referência para Energia Solar e Eólica Sérgio Brito, & Centro de Pesquisas de Energia Elétrica (2018). Potencial Solar - SunData v 3.0. CRESESB and CEPEL, Rio de Janeiro, RJ. 2018. Retrieved on July 11, 2019 from http://www.cresesb.cepel.br/index.php?section=sundata&

Chaui, M. (2003). A universidade pública sob nova perspectiva. Revista Brasileira de Educação, 24, 5–15.

Companhia Paranaense de Energia (2014). Energias renováveis: políticas públicas e planejamento energético. COPEL, Curitiba, PR. 2014.

Conselho de Defesa dos Direitos da Pessoa Humana. (2011). Atingidos por Barragens: Relatório da Violação dos Direitos Humanos na construção de barragens [Comissão Especial] Resoluções nºs 26/06, 31/06, 01/07, 02/07, 05/07. CDDPH, Brasília, DF. Retrieved on March 30, 2019 from http://www.direito.mppr.mp.br/arquivos/File/barragens/sumario.pdf

Dinçer, F. (2011). The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable and Sustainable Energy Reviews, 15, 713–720. https://doi.org/10.1016/j.rser.2010.09.026

Dos Santos, M., Rosa, L., Sikar, B., Sikar, E., & Dos Santos, E. (2016). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. EnergyPolicy, 34(4), 481-488. https://doi.org/10.1016/j.enpol.2004.06.015

Ferreira, A., Kunh, S., Fagnani, K., De Souza, T., Tonezer, C., Dos Santos, G., & Coimbra-Araújo, C. (2018). Economic overview of the use and production of photovoltaic solar energy in Brazil. Renewable and Sustainable Energy Reviews, 81, 181-191. https://doi.org/10.1016/j.rser.2017.06.102

Foladori, G. (2015). O Capitalismo e a crise ambiental, Revista Outubro, ed. 15, No.8. UFPR, Curitiba.

Frota, A., and Schiffer, S. (1995). Manual de conforto térmico. (2ª ed) São Paulo, SP: Nobel. pp. 243.

G1. (2020 a). ‘Após 22 dias de apagão no Amapá, distribuidora e governo dizem que rodízio terminou e que energia foi retomada em 100%’ G1 Amapá. [online] 24 November. Retrieved on December 03, 2020 from https://g1.globo.com/ap/amapa/noticia/2020/11/24/amapa-entra-no-22o-dia-de-apagao-com-novo-transformador-ligado-na-subestacao-que-pegou-fogo.ghtml

G1. (2020 b). Apagão no Amapá: comércio atende apenas sob “luz do sol”, e famílias somam prejuízos com eletrodomésticos. G1 Amapá. [online] 19 November. Retrieved on https://g1.globo.com/ap/amapa/noticia/2020/11/19/apagao-no-amapa-comercio-atende-apenas-sob-luz-do-sol-e-familias-somam-prejuizos-com-eletrodomesticos.ghtml.

Instituto para o desenvolvimento de energias alternativas na América Latina. (2019) O Mercado Brasileiro de Geração Distribuída Fotovoltaica. IDEAL. Retrieved on December 17, 2020 from https://issuu.com/idealeco_logicas/docs/o_mercado_brasileiro_de_gera__o_distribu_da_fv_-_e

Machado, C., & Miranda, F. (2015). Energia Solar Fotovoltaica: Uma Breve Revisão. Revista Virtual de Química, 7(1), 126-173. https://doi.org/10.5935/1984-6835.20150008

Ministério de Minas e Energia (2017). Balanço Energético Nacional de 2016. Brasília, DF, 2017. Retrieved on August 20, 2018 from http://www.mme.gov.br

Panno, D., Buscemi, A., Beccali, M., Chiaruzzi, C., Cipriani, G., Ciulla, G., Di Dioa, V., Lo Branoa, V., & Bonomoloa, M. (2019). A solar assisted seasonal borehole thermal energy system for a non-residential building in the Mediterranean área. Solar Energy, 192, 120-132. https://doi.org/10.1016/j.solener.2018.06.014

Sistema Nacional de Pesquisa e Custos e Índice da Construção Civil. (2020). Cálculos e Parâmetros. SINAPI, Brasil, Governo Federal. Retrieved on December 17, 2020 from https://www.caixa.gov.br/Downloads/sinapi-manual-de-metodologias-e-conceitos/Livro2_SINAPI_Calculos_e_Parametros_2_Edicao_Digital.pdf

Downloads

Published

2021-06-26

How to Cite

Menezes, J., Cury, J. ., & Souza, L. . (2021). Sustainable Practices Improving the University Campus: Feasibility of A Photovoltaic System. Journal of Chemistry, Environmental Sciences and Its Applications, 7(2), 43–53. https://doi.org/10.15415/jce.2021.72006

Issue

Section

Articles