Harmful Impacts of Heavy Metals and Utility of Biosorption Technique for Their Removal from Wastewater: A Review

Authors

  • Ankita Negi Department of Chemistry, S.S. Jeena Campus Almora 263601, Kumaun University,Nainital, Uttarakhand, India
  • Arpita Negi Department of Life Sciences, Graphic Era (Deemed to be) University, Dehradun, 248002, India
  • Rajesh Kumar Department of Chemistry, S.S. Jeena Campus Almora 263601, Kumaun University,Nainital, Uttarakhand, India
  • Bhuvnesh Kumar Department of Chemistry, S.S. Jeena Campus Almora 263601, Kumaun University,Nainital, Uttarakhand, India
  • Sushil Kumar Joshi Department of Chemistry, S.S. Jeena Campus Almora 263601, Kumaun University,Nainital, Uttarakhand, India
  • Narendra Singh Bhandari Department of Chemistry, S.S. Jeena Campus Almora 263601, Kumaun University,Nainital, Uttarakhand, India

DOI:

https://doi.org/10.15415/jce.2021.81001

Keywords:

Active sites, biosorption, contamination, heavy metals, optimum pH

Abstract

The increasing number of efluents discharged from the source of water (urban, industrial, agricultural etc.), is resulting in a higher concentration of heavy metals in the source. Heavy metals have a density of over 5g/cm3 to the metals. These are toxic, mutagenic, carcinogenic and resistant in watery and non-aquatic environments and impact water and non-water bodies seriously by substituting the basic metals of the same function. The extraction from the wastewater can be done in numerous techniques for example using an ion replacement, membrane filtration, osmosis, etc. This study discusses the adverse effects of heavy metals on the human body, the benefits of biosorption over traditional approaches for removal of heavy metals, the different biosorbents used to extract heavy metals and concerning issues regarding its commercial use, offering a wider viewpoint for the diversity of biosorbents and utilization of biosorption technique. It is evident from the profound literature survey that pH, biosorbent particle size, contact time, initial metal ion concentration, presence of chelating ligands etc. are some factors that affect the rate and extent of biosorption. 

Downloads

Download data is not yet available.

References

Adebayo, G. B., Adegoke, H. I., & Fauzeeyat, S. (2020). Adsorption of Cr(VI) ions onto go ethite, activated carbon and their composite: kinetic and thermodynamic studies. Applied Water Science, 10(9), 1–18. https://doi.org/10.1007/s13201-020-01295-z

Adekola, F. A., Hodonou, D. S. S., & Adegoke, H. I. (2016). Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash. Applied Water Science, 6, 319–330. https://doi.org/10.1007/s13201-014-0227-1

Adeogun, A. I., Idowu, M. A., Ofudje, A. E., Kareem, S. O., & Ahmed, S. A. (2013). Comparative biosorption of Mn ( II ) and Pb ( II ) ions on raw and oxalic acid modified maize husk : kinetic , thermodynamic and isothermal studies. Applied Water Sciences, 3, 167–179. https://doi.org/10.1007/s13201-012-0070-1

Adeogun, A. I., Ofudje, A. E., Idowu, M., & Kareem, S. O. (2011). Equilibrium, kinetic and thermodynamic studies of the biosorption of Mn(II) ions from aqueous solution by raw and acid-treated corncob biomass. BioResources, 6(4), 4117–4134.

Ahalya, N., Ramchandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7(4), 71–79. https://doi.org/10.4018/978-1-5225-8903-7.ch077

Ahmad, T., Danish, M., Rafatullah, M., Ghazali, A., Sulaiman, O., Hashim, R., & Ibrahim, M. N. M. (2012). The use of date palm as a potential adsorbent for wastewater treatment: A review. Environmental Science and Pollution Research, 19(5), 1464–1484. https://doi.org/10.1007/s11356-011-0709-8

Akar, T., Cabuk, A., Tunali, S., & Yamac, M. (2006). Biosorption potential of the macrofungus Ganoderma carnosum for removal of lead(II) ions from aqueous solutions. Journal of Environmental Science and Health Part A, 41, 2587–2606. https://doi.org/10.1080/10934520600927989

Alkherraz, A. M., Ali, A. K., & Elsherif, K. M. (2020). Removal of Pb ( II ), Zn ( II ), Cu ( II ) and Cd ( II ) from aqueous solutions by adsorption onto olive branches activated carbon : Equilibrium and thermodynamic studies. Chemistry International, 6(1), 11–20.

Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2010). Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chemical Engineering Journal, 162(1), 178–185. https://doi.org/10.1016/j.cej.2010.05.026

Asadi Haris, S., Altowayti, W. A. H., Ibrahim, Z., & Shahir, S. (2018). Arsenic biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain SOM-12D3 isolated from Svalbard, Arctic. Environmental Science and Pollution Research, 25(28), 27959–27970. https://doi.org/10.1007/s11356-018-2799-z

Babalola, J., Babarinde, N., Popoola, O., & Oninla, V. O. (2009). Kinetic, equilibrium, and thermodynamic studies of the biosorption of Cd (II) and Pb (II) from aqueous solutions by Talinum triangulare (water leaf). The Pacific Journal of Science and Technology, 10(1), 428–438. http://www.akamaiuniversity.us/PJST10_1_428.pdf

Babarinde, A., Ogundipe, K., Sangosanya, K. T., Akintola, B. D., & Hassan, A. O. E. (2016). Comparative study on the biosorption of Pb(II), Cd(II) and Zn(II) using Lemon grass (Cymbopogon citratus): Kinetics, isotherms and thermodynamics. Chemistry Internatioanl, 2(2), 89–102. https://doi.org/10.5281/zenodo.1470602

Babarinde, A., & Onyiaocha, G. O. (2016). Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chemistry International, 2(1), 37–46. http://bosaljournals.com/chemint/images/pdffiles/24.pdf

Balarak, D., Mahdavi, Y., Gharibi, F., & Sadeghi, S. (2014). Removal of hexavalent chromium from aqueous solution using canola biomass : Isotherms and kinetics studies. Journal of Advances in Environmental Health Research, 2(4), 234–241.

Beatrice, N. A., Brell, M. K., Aboubakar, A., Stéphanie, Y. Y. A., Armelle, M. Y. D., Bertrand, Z. Z., Nindum, S. Y. N., Crépin, M. A., & Clarisse, M. M. Y. (2019). Assessment of physicochemical and heavy metal properties of groundwater in Edéa (cameroon). American Journal of Water Resources, 7(1), 1–10. https://doi.org/10.12691/ajwr-7-1-1

Begum, S. A. S., Tharakeswar, Y., Kalyan, Y., & Naidu, G. R. (2015). Biosorption of Cd (II), Cr (VI) & Pb (II) from aqueous solution using Mirabilis jalapa as adsorbent. Journal of Encapsulation and Adsorption Sciences, 5, 93–104. https://doi.org/10.4236/jeas.2015.52007

Bhatia, A. K., & Khan, F. (2015). Biosorptive removal of copper ( II ) ion from aqueous solution using Lawsonia inermis plant leaf biomass. Journal of Environment and Earth Science, 5(5), 21–30.

Bhatnagar, A., Minocha, A. K., & Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48(2), 181–186. https://doi.org/10.1016/j.bej.2009.10.005

Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment — A review. Chemical Engineering Journal, 157, 277–296. https://doi.org/10.1016/j.cej.2010.01.007

Bhatti, H. N., Khalid, R., & Hanif, M. A. (2009). Dynamic biosorption of Zn(II) and Cu(II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chemical Engineering Journal, 148(2–3), 434–443. https://doi.org/10.1016/j.cej.2008.09.028

Bilal, M., Shah, J. A., Ashfaq, T., Mubashar, S., Gardazi, H., Tahir, A. A., Pervez, A., Haroon, H., & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater — A review. Journal of Hazardous Materials, 263, 322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071

Boddu, V. M., Abburi, K., Talbott, J. L., Smith, E. D., & Haasch, R. (2008). Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Research, 42(3), 633–642. https://doi.org/10.1016/j.watres.2007.08.014

Buasri, A., Chaiyut, N., Tapang, K., Jaroensin, S., & Panphrom, S. (2012). Biosorption of heavy metals from aqueous solutions using Water Hyacinth as a low cost biosorbent. Civil and Environmental Research, 2(2), 17–25.

Chakravarty, P., Sarma, N. S., & Sarma, H. P. (2010). Biosorption of cadmium(II) from aqueous solution using heartwood powder of Areca catechu. Chemical Engineering Journal, 162(3), 949–955. https://doi.org/10.1016/j.cej.2010.06.048

Chandrakala, G., Kezia, D., & Naidu, S. V. (2015). Optimization of chromium biosorption by Ageratum conyzoides leaf powder from aqueous solutions: Equilibrium kinetics and thermodynamics. International Journal of Engineering Sciences & Research Technology, 4(6), 152–163.

Chidi, O., & Kelvin, R. (2018). Surface interaction of sweet potato peels (Ipomoea batata) with Cd (II) and Pb (II) ions in aqueous medium. Chemistry International, 4(4), 221–229.

Dawodu, F. A., & Akpomie, K. G. (2014). Simultaneous adsorption of Ni ( II ) and Mn ( II ) ions from aqueous solution unto a Nigerian kaolinite clay. Journal of Materials Research and Technology, 3(2), 129–141. https://doi.org/10.1016/j.jmrt.2014.03.002

de Freitas, G. R., da Silva, M. G. C., & Vieira, M. G. A. (2019). Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. Environmental Science and Pollution Research, 26, 19097–19118. https://doi.org/10.1007/s11356-019-05330-8

Desai, S. M., Charyulu, N., & Suggala, S. V. (2014). Kinetic and static study on biosorption of hexavalent chromium using Tamarind pod shell and carbon as adsorbent. International Journal of Technical Research and Application, 2(5), 61–66.

El-araby, H. A., Ibrahim, A. M. M. A., Mangood, A. H., & Abdel-rahman, A. A. H. (2017). Sesame husk as adsorbent for copper ( II ) ions removal from aqueous solution. Journal of Geoscience and Environment Protection, 5, 109–152. https://doi.org/10.4236/gep.2017.57011

Elsherif, K. M., El-hashani, A., & Haider, I. (2018). Biosorption of Fe ( III ) onto coffee and tea powder : equilibrium and kinetic study. Asian Journal of Green Chemistry, 2, 380–394. https://doi.org/10.22631/ajgc.2018.127216.1062

Elsherif, K. M., & Haider, I. (2019). Adsorption of Co(II) ions from aqueous solution onto tea and coffee powder: equilibrium and kinetic studies. Journal of Fundamental and Applied Sciences, 11(1), 65–81.

Gerente, C., Lee, V. K. C., Cloirec, P. L. E., & Mckay, G. (2007). Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption — Mechanisms and Models Review. Critical Reviews in Environmental Science and Technology, 37, 41–127. https://doi.org/10.1080/10643380600729089

Giri, A. K., Patel, R. K., Mahapatra, S. S., & Mishra, P. C. (2013). Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environmental Science and Pollution Research, 20(3), 1281–1291. https://doi.org/10.1007/s11356-012-1249-6

Girish, C. R., & Murty, V. R. (2014). Adsorption of phenol from aqueous solution using Lantana camara, forest waste: kinetics, isotherm, and thermodynamic studies. International Scholarly Research Notices, 1–16. https://doi.org/10.1007/s40710-015-0117-z

Hansen, H. K., Ribeiro, A., & Mateus, E. (2006). Biosorption of arsenic(V) with Lessonia nigrescens. Minerals Engineering, 19(5), 486–490. https://doi.org/10.1016/j.mineng.2005.08.018

Hossain, A., Bhattacharyya, S. R., & Aditya, G. (2015). Biosorption of cadmium by waste shell dust of fresh water mussel lamellidens marginalis: Implications for metal bioremediation. ACS Sustainable Chemistry and Engineering, 3(1), 1–8. https://doi.org/10.1021/sc500635e

Huang, H., Cao, L., Wan, Y., Zhang, R., & Wang, W. (2012). Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Applied Microbiology and Biotechnology, 96(3), 829–840. https://doi.org/10.1007/s00253-011-3846-6

Imran, D. M., Naseem, K., Mirza, M. L., & Batool, M. (2018). Evaluation of Saccharum bengalense as a non-conventional biomaterial for biosorption of Mn ( II ) Ions from aqueous solutions. Iranian Journal of Chemistry and Chemical Engineering, 37(6), 179–189.

Ingole, N. W., & Dharpal, S. V. (2012). State of art of biosorption technique for treatment of heavy metals bearing wastes. International Journal of Advanced Engineering Technology, 3(2), 143–153.

Ipeaiyeda, A. R., & Tesi, G. O. (2014). Sorption and desorption studies on toxic metals from brewery effluent using eggshell as adsorbent. Advances in Natural Science, 7(2), 15–24. https://doi.org/10.3968/5394

Javaid, A., Bajwa, R., Shafique, U., & Anwar, J. (2011). Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass and Bioenergy, 35(5), 1675–1682. https://doi.org/10.1016/j.biombioe.2010.12.035

Johnson, T. A., Jain, N., Joshi, H. C., & Prasad, S. (2008). Agricultural and agro-processing wastes as low cost adsorbents for metal removal from wastewater: A review. Journal of Scientific and Industrial Research, 67(9), 647–658.

Kalyani, G., Rao, G. B., Saradhi, B. V., & Kumar, Y. P. (2009). Equilibrium and kinetic studies on biosorption of zinc onto Gallus domesticus shell powder. ARPN Journal of Engineering and Applied Sciences, 4(1), 39–49.

Kamarudzaman, A. N., Chia, T. C., Ab Jalil, M. F., & Talib, S. A. (2013). Biosorption of iron (III) from aqueous solution using pleurotus ostreatus spent mushroom compost as biosorbent. Advanced Materials Research, 781–784, 636–642. https://doi.org/10.4028/www.scientific.net/AMR.781-784.636

Kamsonlian, S., Suresh, S., Ramanaiah, V., Majumder, C. B., Chand, S., & Kumar, A. (2012). Biosorptive behaviour of mango leaf powder and rice husk for arsenic(III) from aqueous solutions. International Journal of Environmental Science and Technology, 9(3), 565–578. https://doi.org/10.1007/s13762-012-0054-6

Karao, M. H., Zor, S., & Ugurlu, M. (2010). Biosorption of Cr ( III ) from solutions using vineyard pruning waste. Chemical Engineering Journal, 159, 98–106. https://doi.org/10.1016/j.cej.2010.02.047

Kavitha, B., & Arunadevi, R. (2018). Biosorption of copper II ions by Eclipta alba leaf powder from aqueous solutions. International Journal of Trend in Scientific Research and Development, Volume-2(Issue-5), 1775–1782. https://doi.org/10.31142/ijtsrd17156

Kirova, G. K., Velkova, Z. Y., Stoytcheva, M. S., & Gochev, V. K. (2015). Zinc biosorption by waste Streptomyces fradiae biomass: Equilibrium and Kinetics. Ecologia Balkanica, 7(2), 63–72.

Kirova, G., Velkova, Z., Stoytcheva, M., Hristova, Y., Iliev, I., & Gochev, V. (2015). Biosorption of Pb(II) ions from aqueous solutions by waste biomass of streptomyces fradiae pretreated with NaOH. Biotechnology and Biotechnological Equipment, 29(4), 689–695. https://doi.org/10.1080/13102818.2015.1036775

Kumar, R., Sharma, H., Vishwakarma, M. C., Joshi, S. K., Bhandari, N. S., & Kandpal, N. D. (2020). Adsorptive removal of Pb(II), Cu(II) and Cd(II) Ions onto Rubus ellipticus as low-cost biosorbent. Asian Journal of Chemistry, 32(3), 495–500. https://doi.org/10.14233/ajchem.2020.22361

Kumar, Y. P., King, P., & Prasad, V. S. R. K. (2006a). Equilibrium and kinetic studies for the biosorption system of copper(II) ion from aqueous solution using Tectona grandis L.f. leaves powder. Journal of Hazardous Materials B, 137(2), 1211–1217. https://doi.org/10.1016/j.jhazmat.2006.04.006

Kumar, Y. P., King, P., & Prasad, V. S. R. K. (2006b). Zinc biosorption on Tectona grandis L.f. leaves biomass: Equilibrium and kinetic studies. Chemical Engineering Journal, 124, 63–70. https://doi.org/10.1016/j.cej.2006.07.010

Lai, Y., Annadurai, G., Huang, F., & Lee, J. (2008). Biosorption of Zn ( II ) on the different Ca-alginate beads from aqueous solution. Bioresource Technology, 99, 6480–6487. https://doi.org/10.1016/j.biortech.2007.11.041

Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J., & Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 44, 19–41. https://doi.org/10.1016/j.bej.2008.12.009

Lucaci, A. R., Bulgariu, D., Popescu, M. C., & Bulgariu, L. (2020). Adsorption of Cu ( II ) ions on adsorbent materials obtained from marine red algae Callithamnion corymbosum sp. Water, 12(372), 1–16. https://doi.org/10.3390/w12020372

Madala, S., Mudumala, V. N. R., Vudagandla, S., & Abburi, K. (2015). Modified leaf biomass for Pb(II) removal from aqueous solution: Application of response surface methodology. Ecological Engineering, 83, 218–226. https://doi.org/10.1016/j.ecoleng.2015.06.025

Malik, L. A., Bashir, A., Qureashi, A., & Pandith, A. H. (2019). Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-019-00891-z

Marandi, R., Ardejani, F. D., & Afshar, H. A. (2010). Biosorption of lead (II) and zinc (II) ions by pre-treated biomass of phanerochaete chrysosporium. International Journal of Mining and Environmental Issues, 1(1), 9–16.

Mashkoor, F., Nasar, A., Inamuddin, & Asiri, A. M. (2018). Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using tectona grandis sawdust as a very low-cost adsorbent. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-26655-3

Moyo, M., Chikazaza, L., Nyamunda, B. C., & Guyo, U. (2013). Adsorption batch studies on the removal of Pb(II) using maize tassel based activated carbon. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/508934

Murithi, G., Onindo, C. O., Wambu, E. W., & Muthakia, G. K. (2014). Removal of cadmium(II) ions from water by adsorption using water hyacinth ( Eichhornia crassipes ) biomass. BioResources, 9(2), 3613–3631.

Nadeem, R., Nasir, M. H., & Hanif, M. S. (2009). Pb (II) sorption by acidically modified Cicer arientinum biomass. Chemical Engineering Journal, 150(1), 40–48. https://doi.org/10.1016/j.cej.2008.12.001

Ngah, W. S. W., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents : A review. Bioresource Technology, 99, 3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011

Nigam, S., Gopal, K., & Vankar, P. S. (2013). Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata. Environmental Science and Pollution Research, 20(6), 4000–4008. https://doi.org/10.1007/s11356-012-1342-x

Nkiko, M. O., Abideen, A. I., Babarinde, N. A. A., & Sharaibi, O. J. (2013). Isothermal, kinetics and thermodynamics studies of the biosorption of Pb(II) ion from aqueous solution using the scale of croaker fish (Genyonemus lineatus). Journal of Water Reuse and Desalination, 3(3), 239–248. https://doi.org/10.2166/wrd.2013.077

Ofudje, E. A., Akiode, O. K., Oladipo, O. G., Adedapo, A. E., Adebayo, L. O., & Awotula, A. O. (2015). Application of raw and alkaline-modified coconut shaft as a biosorbent for Pb 2 + removal. BioResources, 10(2), 3462–3480.

Ogbodu, R. O., Omorogie, M. O., Unuabonah, E. I., & Babalola, J. O. (2015). Biosorption of Heavy Metals from Aqueous Solutions by Parkia biglobosa biomass: Equilibrium, Kinetics and Thermodynamics. Environmental Progress & Sustainable Energy, 1–11. https://doi.org/10.1002/ep

Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., & Chandrashekhar, K. (2009). Biosorptive removal of arsenic from drinking water. Bioresource Technology, 100(2), 634–637. https://doi.org/10.1016/j.biortech.2008.07.063

Parvathi, K., Nareshkumar, R., & Nagendran, R. (2007). Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 23(5), 671–676. https://doi.org/10.1007/s11274-006-9281-7

Pehlivan, E., Altun, T., Cetin, S., & Bhanger, M. I. (2009). Lead sorption by waste biomass of hazelnut and almond shell. Journal of Hazardous Materials, 167, 1203–1208. https://doi.org/10.1016/j.jhazmat.2009.01.126

Pino, G. H., De Mesquita, L. M. S., Torem, M. L., & Pinto, G. A. S. (2006). Biosorption of cadmium by green coconut shell powder. Minerals Engineering, 19(5), 380–387. https://doi.org/10.1016/j.mineng.2005.12.003

Prasad, K. S., Ramanathan, A. L., Paul, J., Subramanian, V., & Prasad, R. (2013). Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environmental Technology, 34(19), 2701–2708. https://doi.org/10.1080/09593330.2013.786137

Rahman, M. W., Ali, M. Y., Saha, I., Raihan, M. Al, Moniruzzaman, M., Alam, M. J., Deb, A., & Khan, M. M. R. (2017). Date palm fiber as a potential low-cost adsorbent to uptake chromium ( VI ) from industrial wastewater. Desalination and Water Treatment, 88, 169–178. https://doi.org/10.5004/dwt.2017.21402

Rangnani, D., & Tak, R. K. (2017). Bio sorption of Manganese ( II ) ions from aqueous solution by dry biomass of lantana camara. International Journal of Green and Herbal Chemistry, 6(3), 96–103. https://doi.org/10.24214/IJGHC/GC/6/3/9603

Ranjan, D., Talat, M., & Hasan, S. H. (2009). Biosorption of arsenic from aqueous solution using agricultural residue “rice polish.” Journal of Hazardous Materials, 166(2–3), 1050–1059. https://doi.org/10.1016/j.jhazmat.2008.12.013

Ravulapalli, S., & Ravindhranath, K. (2018). Enhanced removal of chromium (VI) from wastewater using active carbon derived from Lantana camara plant as adsorbent. Water Science and Technology, 78(6), 1377–1389. https://doi.org/10.2166/wst.2018.413

Riaz, M., Nadeem, R., Hanig, M. A., Ansari, T. M., & Rehman, K. U. (2009). Pb ( II ) biosorption from hazardous aqueous streams using Gossypium hirsutum ( Cotton ) waste biomass. Journal of Hazardous Materials, 161, 88–94. https://doi.org/10.1016/j.jhazmat.2008.03.096

Robert, R. J., & Girish, C. R. (2018). The removal of cobalt, nickel, cadmium and lead from wastewater using Lantana Camara as adsorbent. International Journal of Civil Engineering and Technology, 9(8), 292–303.

Rodríguez, I. A., Martínez-Juárez, V. M., Cárdenas-González, J. F., & Moctezuma-Zárate, M. D. G. (2013). Biosorption of arsenic(III) from aqueous solutions by modified fungal biomass of Paecilomyces sp. Bioinorganic Chemistry and Applications, 2013. https://doi.org/10.1155/2013/376780

Rose, P. K., & Devi, R. (2015). Adsorption isotherm study of cadmium on dairy sludge based adsorbent. International Journal for Innovative Research in Science & Technology, 1(11), 145–151.

Sari, A., Uluozlü, Ö. D., & Tüzen, M. (2011). Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chemical Engineering Journal, 167(1), 155–161. https://doi.org/10.1016/j.cej.2010.12.014

Sathianesan, S. S., Rajayyan, M. K., & Malairajan, S. (2018). Removal of lead(II) ions from synthetic wastewater using Lantana camara leaves biocarbon. International Journal of Current Advanced Research, 7(4), 12144–12150.

Say, R., Yilmaz, N., & Denizli, A. (2003). Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039–2053. https://doi.org/10.1081/SS-120020133

Şengil, I. A., & Özacar, M. (2009). Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials, 166(2–3), 1488–1494. https://doi.org/10.1016/j.jhazmat.2008.12.071

Sharma, A. S., & Bhalerao, S. A. (2018). Application ion of immobilized banana peels ( Musa paradisiaca L .) into calcium alginate beads for removal of chromium ( VI ) from aqueous solution. International Journal of Trend in Scientific Research and Development, 2(2), 1310–1325.

Sharma, H., Kumar, R., Vishwakarma, M. C., Joshi, S. K., & Bhandari, N. S. (2020). Biosorptive removal of Cu(II), Cd(II) and Pb(II) ions from synthetic wastewater using low cost biosorbent (Pyras pashia): thermodynamic and equilibrium studies. Asian Journal of Chemistry, 32(4), 727–732. https://doi.org/10.14233/ajchem.2020.22372

Sharma, N., Kaur, K., & Kaur, S. (2009). Kinetic and equilibrium studies on the removal of Cd2+ ions from water using polyacrylamide grafted rice (Oryza sativa) husk and (Tectona grandis) saw dust. Journal of Hazardous Materials, 163, 1338–1344. https://doi.org/10.1016/j.jhazmat.2008.07.135

Singanan, M., & Shyla, S. S. (2017). Removal of hexavalent chromium from synthetic wastewater by using biocarbon. European Journal of Environmental Ecology, 4(1), 7–11.

Suguna, M., & Kumar, N. S. (2013). Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent. Indian Journal of Chemical Technology, 20, 57–69. https://doi.org/10.1016/j.biortech.2010.02.004

Suguna, M., Reddy, A. S., Kumar, N. S., & Krishnaiah, A. (2010). Biosorption of manganese(II) ions from aqueous solution by glutaraldehyde cross-linked chitosan beads: Equilibrium and kinetic studies. Adsorption Science and Technology, 28(3), 213–228. https://doi.org/10.1260/0263-6174.28.3.213

Suhasini, I. P., Sriram, G., Asolekar, S. R., & Sureshkumar, G. K. (1999). Biosorptive removal and recovery of cobalt from aqueous systems. Process Biochemistry, 34, 239–247. https://doi.org/10.1016/S0032-9592(98)00090-9

Tariq, A., Ullah, U., Asif, M., & Sadiq, I. (2019). Biosorption of arsenic through bacteria isolated from Pakistan. International Microbiology, 22(1), 59–68. https://doi.org/10.1007/s10123-018-0028-8

Tay, C. C., Liew, H. H., Yong, S. K., Surif, S., Redzwan, G., & Abdul-talib, S. (2012). Cu ( II ) removal onto fungal derived biosorbents : Biosorption performance and the half saturation constant concentration approach. International Journal of Research in Chemistry and Environment, 2(3), 138–143.

Tichaona, N., & Olindah, H. (2013). Equilibrium isotherm analysis of the biosorption of Zn2+ ions by acid treated Zea mays leaf powder. International Journal of Advances in Engineering & Technology, 6(1), 128–139.

Tiwari, P., Vishwakarma, M. C., Joshi, S. K., Kumar, R., & Bhandari, N. S. (2017). Equilibrium and Thermodynamic Studies of Pb ( II ), Cu ( II ) and Zn ( II ) Adsorption onto Dicliptera bupleuroides Leaves. Chemical Science Transaction, 6(1), 97–106. https://doi.org/10.7598/cst2017.1331

Tiwari, P., Vishwakarma, M. C., Joshi, S. K., Sharma, H., & Bhandari, N. S. (2017). Adsorption of Pb ( II ), Cu ( II ), and Zn ( II ) Ions onto Urtica dioica Leaves ( UDL ) as a Low Cost Adsorbent : Equilibrium and Thermodynamic Studies. Modern Chemistry, 5(1), 11–18. https://doi.org/10.11648/j.mc.20170501.13

Vijayaraghavan, K., Palanivelu, K., & Velan, M. (2006). Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology, 97(12), 1411–1419. https://doi.org/10.1016/j.biortech.2005.07.001

Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3), 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002

Vilvanathan, S., & Shanthakumar, S. (2016). Removal of Ni(II) and Co(II) ions from aqueous solution using teak (Tectona grandis) leaves powder: adsorption kinetics, equilibrium and thermodynamics study. Desalination and Water Treatment, 57(9), 3995–4007. https://doi.org/10.1080/19443994.2014.989913

Vilvanathan, S., & Shanthakumar, S. (2018). Ni2+ and Co2+ adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies. In Environmental Technology (Vol. 39, Issue 4). https://doi.org/10.1080/09593330.2017.1304454

Vishwakarma M.C., Tiwari P., Joshi S.K., S. H., & N.S., B. (2018). Adsorption of Cu(II) Ion onto Activated Eupatorium Adenophorum and Acer Oblongum: Thermodynamic, Kinetic and Equilibrium Studies. Chemical Science Transactions, 7(2). https://doi.org/10.7598/cst2018.1490

Wang, G., Zhang, S., Yao, P., Chen, Y., Xu, X., Li, T., & Guoshu, G. (2015). Removal of Pb ( II ) from aqueous solutions by Phytolacca americana L . biomass as a low cost biosorbent. Arabian Journal of Chemistry, 0–11. https://doi.org/10.1016/j.arabjc.2015.06.011

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption : A review. Advances in Colloid and Interface Science, 209, 172–184.

Yilmaz, M., Tay, T., Kivanc, M., & Turk, H. (2010). Removal of copper(II) ions from aqueous solution by a lactic acid bacterium. Brazilian Journal of Chemical Engineering, 27(2), 309–314. https://doi.org/10.1590/S0104-66322010000200009

Yusoff, S. N. M., Kamari, A., Putra, W. P., Ishak, C. F., Mohamed, A., Hashim, N., & Isa, I. M. (2014). Removal of Cu ( II ), Pb ( II ) and Zn ( II ) ions from aqueous solutions using selected agricultural wastes : adsorption and characterisation studies. Journal of Environmental Protection, 5, 289–300.

Zwain, H. M., Vakili, M., & Dahlan, I. (2014). Waste material adsorbents for zinc removal from wastewater : a comprehensive review. International Journal of Chemical Engineering, 2014, 1–13.

Downloads

Published

2022-01-03

How to Cite

Negi, A., Negi, A. ., Kumar, R., Kumar, B. ., Joshi, S. K., & Bhandari, N. S. . (2022). Harmful Impacts of Heavy Metals and Utility of Biosorption Technique for Their Removal from Wastewater: A Review. Journal of Chemistry, Environmental Sciences and Its Applications, 8(1), 1–17. https://doi.org/10.15415/jce.2021.81001

Issue

Section

Articles