Antimicrobial Efficacy of Green Silver Nanoparticles and Potential Implications for Human Health and the Environment

Authors

  • Mohsin Khan School of Applied Sciences, Chitkara University, Patiala, Punjab (India)- 140401
  • Mh Aftab Triple Vaccine division, Central Research Institute, Kasauli, Solan (H.P.), India
  • Varun Chauhan School of Biotechnology, Shoolini University, Bajhol, Solan (H.P.), India
  • Jyotsna Kaushal School of Applied Sciences, Chitkara University, Patiala, Punjab (India)- 140401

DOI:

https://doi.org/10.15415/jce.2015.12008

Keywords:

Nanotechnology, nanoparticles, medical applications, environment friendly, green synthesis

Abstract

The beginnings of the applications of nanotechnology in the field of health sciences took place in early 2000s. There is a wide range of application of nanoparticles and its uses are emerging rapidly. Nanoparticle synthesis is usually carried out by various physical and chemical methods using various hazardous and toxic chemicals which may have adverse effect in the medical applications. Nevertheless, green synthesis approaches of producing silver nanoparticles are an alternative source of conventional method and is cost effective, environment friendly, easily scaled up for large scale synthesis and in this method there is no need to exploit high pressure, energy, temperature and toxic chemicals as in case of chemical and physical method. In this review, we report, some of the major applications of green synthesis of silver nanoparticles.

Downloads

Download data is not yet available.

References

Ahmad, A., Mukherjee, P., Senapati, S., Mandal, d., Khan, M.I., Kumar, R., & Sastry, M. (2003). Colloids Surf. B, 28, 313. http://dx.doi.org/10.1016/S0927-7765(02)00174-1

Alivisatos, A.P. (1996). J. Phys. Chem., 100(31), 13226–13239.http://dx.doi.org/10.1021/jp9535506

Alivisatos, A.P. (1996). Science, 271, 933–937.http://dx.doi.org/10.1126/science.271.5251.933

Arunachalam, R., dhana Singh, S., Kalimuthu, B., Uthirappan, M., Rose, C., & Mandal, A.B. (2012). Colloid. Surface B, 94, 226–230.http://dx.doi.org/10.1016/j.colsurfb.2012.01.040

Bae, C.H., Nam, S.H., & Park, S.M. (2002). Appl. Surf. Sci., 197, 628–634.http://dx.doi.org/10.1016/S0169-4332(02)00430-0

Balaprasad, A. (2005). Metal-Organic and Nano- Metal Chemistry, 35, 19.

Bar, H., Bhui, d.K., Sahoo, G.P., Sarkar, P., de, S.P., & Misra, A. (2009). Colloids Surf A Physicochem Eng Asp, 339, 134–139. http://dx.doi.org/10.1016/j.colsurfa.2009.02.008

Bhainsa, K.C., & d’Souza, S.F. (2006). Colloids and Surfaces B: Biointerfaces, 47, 160–164. http://dx.doi.org/10.1016/j.colsurfb.2005.11.026

Bindhu, M.R., & Umadevi, M. (2013). Spectrochim. Acta. A., 101, 184–190.http://dx.doi.org/10.1016/j.saa.2012.09.031

Boca, S.C., Potara, M., Gabudean, A.M., Juhem, A., Baldeck, P.L., & Astilean, S. (2011). Cancer Lett., 31, 131–140. http://dx.doi.org/10.1016/j.canlet.2011.06.022

Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A.P. (1998). Science, 281, 2013–2016. http://dx.doi.org/10.1126/science.281.5385.2013

Callegari, A., Tonti, d., & Chergui, M. (2003). Nano Lett., 3, 1565–1568http://dx.doi.org/10.1021/nl034757a

Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Biotechnol Prog., 22, 577–583. http://dx.doi.org/10.1021/bp0501423

Chaudhry, Q., & Castle, L. (2011). Trends Food Sci. Tech., 22, 595–603.http://dx.doi.org/10.1016/j.tifs.2011.01.001

Chopra, I. (2007). J. Antimicrob Chemother., Apr; 59(4), 587.

Coe, S., Woo, W.K., Bawendi, M., & Bulovic, V. (2002). Nature, 420, 800–803.http://dx.doi.org/10.1038/nature01217

Crooks,. R.M., Lemon, B.I., Sun, L., Yeung, L.K., & Zhao, M. (2001). Top. Curr. Chem., 212, 82-135. http://dx.doi.org/10.1007/3-540-44924-8_3

Cruz, D., Falé, P.L., Mourato, A., Vaz, P.d., Serralheiro, M.L., & Lino, A.R.L. (2010). Colloid. Surface B, 81, 67–73. http://dx.doi.org/10.1016/j.colsurfb.2010.06.025

Dankovich, T.A., & Gray, D.G. (2011). Environ. Sci. Technol., 45, 1992–1998.http://dx.doi.org/10.1021/es103302t

Das, J., Paul, d., & Velusamy, M.P. (2013). Spectrochim. Acta. A 104, 265–270.http://dx.doi.org/10.1016/j.saa.2012.11.075

Dick, L. A., McFarland, A. d., Haynes, C. L., & Van Duyne, R. P. (2002). J. Phys. Chem. B., 106, 853-860. http://dx.doi.org/10.1021/jp013638l

Dimitrijevic, N.M., Bartels, d.M., Jonah, C.d., Takahashi, K., & Rajh, T. (2001). J Phys Chem B, 105, 954–959. http://dx.doi.org/10.1021/jp0028296

Dipankar, C., & Murugan, S. (2012). Colloid. Surface B, 98, 112–119.http://dx.doi.org/10.1016/j.colsurfb.2012.04.006

Edison, T.J., & Sethuraman, M.G. (2013). Spectrochim. Acta. A., 104, 262–264.http://dx.doi.org/10.1016/j.saa.2012.11.084

El-Sayed, M.A. (2001). Acc. Chem. Res., 34, 257-264.http://dx.doi.org/10.1021/ar960016n

Fendler, J. H., & Meldrum, F. C. (1995). Advanced Materials, 7, 607-632.http://dx.doi.org/10.1002/adma.19950070703

Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., & Kim, J.O. (2000). J Biomed Mater. Res., 52(4), 662.http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662::AId-JBM10>3.0.CO;2-3

Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., & Jose- Yacaman, M. (2003). Langmuir, 19, 1357–1361. http://dx.doi.org/10.1021/la020835i

Ghaffari-Moghaddam, M., & Hadi-dabanlou, R. (2014). J Indus Eng Chem, 20, 739–744. http://dx.doi.org/10.1016/j.jiec.2013.09.005

Ghaffari-Moghaddam, M., Hadi-dabanlou, R., Khajeh, M., Rakhshanipour, M., & Shameli, K. (2014). Korean J Chem Eng, 31, 548–557.http://dx.doi.org/10.1007/s11814-014-0014-6

Gittins, d.I., Bethell, d., Nichols, R.J., & Schiffrin, d.J. (2000). J. Mater. Chem., 10, 79–83. http://dx.doi.org/10.1039/a902960e

Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E., & Baffa, O. (2011). Spectrochim. Acta. A, 82, 140–145. http://dx.doi.org/10.1016/j.saa.2011.07.024

Hao, E., Kelly, K.L., Hupp, J.T., & Schatz, G.C. (2002). J. Am. Chem. Soc., 124, 15182-15183. http://dx.doi.org/10.1021/ja028336r

Jagtap, U., & Bapa, V.A. (2013). Ind. Crop Prod., 46, 132–137.http://dx.doi.org/10.1016/j.indcrop.2013.01.019

Jain, J., Arora, S., Rajwade, J.M., Omray, P., Khandelwal, S., & Paknikar, K.M. (2009).

Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Science, 294, 1901-1903. http://dx.doi.org/10.1126/science.1066541

Jin, R., Cao, Y.C., Hao, E., Metraux, G.S., Schatz, G.C., & Mirkin, C.A. (2003). Nature, 425, 487-490. http://dx.doi.org/10.1038/nature02020

Karuppiah, M., & Rajmohan, R. (2013). Mater. Lett., 97, 141–143.http://dx.doi.org/10.1016/j.matlet.2013.01.087

Keki, S., Torok, J. & Deak, G. et al. (2000). J. Colloid Interf. Sci., 229, 550–553.http://dx.doi.org/10.1006/jcis.2000.7011

Kelly, F.M., & Johnston, J.H. (2011). ACS Appl. Mater. Interfaces, 3, 1083–1092.http://dx.doi.org/10.1021/am101224v

Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). J. Phys. Chem.B, 107, 668-677. http://dx.doi.org/10.1021/jp026731y

Kim, J., Cha, S., Shin, K., Jho, J.Y., & Lee, J.C. (2004). Advanced Materials, 16, 459-464. http://dx.doi.org/10.1002/adma.200404906

Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.G. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 13611. http://dx.doi.org/10.1073/pnas.96.24.13611

Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.G. (2001). Trends Biotechnol., 19, 15. http://dx.doi.org/10.1016/S0167-7799(00)01514-6

Kotakadi, V.S., Rao, Y.S., Gaddam, S.A., Prasad, T.N.V.K.V., Reddy, A.V., & Gopal, d.V.R.S. (2013). Colloid. Surface B, 105, 194–198.http://dx.doi.org/10.1016/j.colsurfb.2013.01.003

Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S.K., & Paknikar, K.M. (2003). Nanotechnology, 14, 95. http://dx.doi.org/10.1088/0957-4484/14/1/321

Krishnaraj, C., Jagan E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., & Mohan, N. (2010). Colloids Surf B: Biointerfaces, 76, 50–56.http://dx.doi.org/10.1016/j.colsurfb.2009.10.008

Liu, Y.C. & Lin, L.H. (2004). Electrochem. Commun., 6, 1163–1168.http://dx.doi.org/10.1016/j.elecom.2004.04.021

Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. Advanced Materials, 13, 1501-1505.http://dx.doi.org/10.1002/1521-4095(200110)13:19<1501::AId-AdMA1501>3.0.CO;2-Z

Mallick, K., Witcombb, M.J., & Scurrella, M.S. (2005). Mater. Chem. Phys., 90, 221–224. http://dx.doi.org/10.1016/j.matchemphys.2004.10.030

Metraux, G. S., & Mirkin, C.A. (2005). Advanced Materials, 17, 412-415.http://dx.doi.org/10.1002/adma.200401086

Mol. Pharm., 6, 1388–1401. http://dx.doi.org/10.1021/mp900056g

Mukherjee, P., Ahmad, A., Mandal, d., Senapati, S., Sainkar, S.R., Khan, M.I., Parishcha, R., Ajaykumar, P.V., Alam, M., Kumar, R., & Sastry, M. (2001). Nano Lett., 1, 515.http://dx.doi.org/10.1021/nl0155274

Murphy, C.J. (2008). J. Mater. Chem., 18, 2173–2176.http://dx.doi.org/10.1039/b717456j

Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., & Kumar, d.S. (2010). Plant Sci., 179, 154–163. http://dx.doi.org/10.1016/j.plantsci.2010.04.012

Niraimathi, K.L., Sudha, V., Lavanya, R., & Brindha, P. (2013). Colloid. Surface B, 102, 288–291. http://dx.doi.org/10.1016/j.colsurfb.2012.08.041

Parashar, V., Parashar, R., Sharma, B., & Pandey, A.C. (2009). digest Journal of Nanomaterials and Biostructures, 4(1), 45-50.

Pastoriza-Santos, I., & Liz-Marzon, L.M. (2002). Nano Lett., 2, 903-905.http://dx.doi.org/10.1021/nl025638i

Pattabi, M., & Uchil, J. (2000). Solar Energ. Mater. Solar Cell, 63, 309–314.http://dx.doi.org/10.1016/S0927-0248(00)00050-7

Petit, C., Lixon, P., & Pileni, M.P. (1993). J. Phys. Chem, 97, 12974–12983.http://dx.doi.org/10.1021/j100151a054

Raja, K., Saravanakumar, A., & Vijayakumar, R. (2012). Spectrochim. Acta. A, 97, 490–494. http://dx.doi.org/10.1016/j.saa.2012.06.038

Rajakumar, G., & Rahuman, A.A. (2012). Res. Vet. Sci., 93, 303–309.http://dx.doi.org/10.1016/j.rvsc.2011.08.001

Raman, N., Sudharsan, S., Veerakumar, V., Pravin, N., & Vithiya, K. (2012). Spectrochim. Acta. A., 96, 1031–1037. http://dx.doi.org/10.1016/j.saa.2012.08.011

Ravindran, T.R., Arora, A.K., Balamuragan, B., & Mehta, B.R. (1999). Nanostruct. Mater., 11 603–609. http://dx.doi.org/10.1016/S0965-9773(99)00346-3

Roopan, S.M., Madhumitha, G.R., Rahuman, A., Kamaraj, A., Bharathi, C. A., & Surendra, T.V. (2013). Ind. Crop Prod., 43, 631–635.http://dx.doi.org/10.1016/j.indcrop.2012.08.013

[1] Saifuddin, N., Wong, C.W., & Yasumira, A.N. (2009). E-Journal of Chemistry, 6(1), 61-70.

Sandmann, G., Dietz, H., & Plieth, W. (2000). J. Electroanal. Chem., 491, 78–86.http://dx.doi.org/10.1016/S0022-0728(00)00301-6

Sankar, R., Karthik, A., Prabu, A., Karthik, S., Shivashangari, K.S., & Ravikumar, V. (2013). Colloid. Surface B, 108, 80–84. http://dx.doi.org/10.1016/j.colsurfb.2013.02.033

Santhoshkumar, T., Rahuman, A.A., Bagavan, A., Marimuthu, S., Jayaseelan, C., Kirthi, A.V., Kamaraj, C., Rajakumar, G., Zahir, A.A., Elango, G., Velayutham, K., Iyappan, M., Siva, C., Karthik, L., & Rao, K.V. (2012). Exp. Parasitol., 132, 156–165.http://dx.doi.org/10.1016/j.exppara.2012.06.009

Sarma, T.K., & Chattopadhyay, A. (2004). Langmuir, 20, 3520-3524.http://dx.doi.org/10.1021/la049970g

Sau, T.K., & Murphy, C.J. (2004). J. Am. Chem. Soc., 126, 8648-8649.http://dx.doi.org/10.1021/ja047846d

Schultz, S., Smith, d.R., Mock, J.J., & Schultz, d.A. (2000). PNAS, 97, 996-1001.http://dx.doi.org/10.1073/pnas.97.3.996

Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2005). Chem. Mater., 17, 566-572.http://dx.doi.org/10.1021/cm048292g

Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Nat. Mater., 3, 482-488. http://dx.doi.org/10.1038/nmat1152

Shao, Y., Jin, Y., & dong, S. (2004). Chem. Commun., 1104-1105.http://dx.doi.org/10.1039/b315732f

Sharma, V.K., Yngard, R.A., & Lin., Y. (2009). Advanced Colloid Interface Sci., 145, 83–96. http://dx.doi.org/10.1016/j.cis.2008.09.002

Shi, A.C., & Masel, R. I. (1989). J. Catal., 120, 421- 431.http://dx.doi.org/10.1016/0021-9517(89)90282-0

Shiv Shankar, S., Ahmad, A., & Sastry, M. (2003). Biotechnol. Prog., 19, 627.

Shiv Shankar, S., Rai, A., Ahmad, A., & Sastry, M. (2004). Journal of Colloid and Interface Science, 275, 496. http://dx.doi.org/10.1016/j.jcis.2004.03.003

Shiv Shankar, S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Nature Materials, 3, 482. http://dx.doi.org/10.1038/nmat1152

Smetana, A.B., Klabunde, K.J., & Sorensen, C.M. (2005). J. Colloid Interf. Sci., 284, 521–526. http://dx.doi.org/10.1016/j.jcis.2004.10.038

Steven, R., Emory, W.E., Haskins, S., & Niel (1998). J.Am.Chem.Soc., 120, 8009.http://dx.doi.org/10.1021/ja9815677

Sun, Y., Yin, Y., Mayers, B.T., Herricks, T., & Xia, Y. (2002). Chem Mater., 14, 4736–4745. http://dx.doi.org/10.1021/cm011548n

Swami, A., Selvakannan, P.R., Pasricha, R., & Sastry, M. (2004). J Phys Chem B, 108, 19269. http://dx.doi.org/10.1021/jp0465581

Tamuly, C., Hazarika, M., Borah, S.C., das, M.R., & Boruah, M.P. (2013). Colloid. Surface B, 102, 627–634. http://dx.doi.org/10.1016/j.colsurfb.2012.09.007

Tan, Y., Wang, Y., & Jiang, L. et al. (2002). J. Colloid Interf. Sci., 249, 336–345.http://dx.doi.org/10.1006/jcis.2001.8166

Valli, J.S., & Vaseeharan, B. (2012). Mater. Lett., 82, 171–173.http://dx.doi.org/10.1016/j.matlet.2012.05.040

Vanaja, M., Gnanajobitha, G., Paulkumar, K., Rajeshkumar, S., Malarkodi, C., & Annadura, G. (2013). J. Nanostructure Chem., 3, 17. http://dx.doi.org/10.1186/2193-8865-3-17

Veerasamy, R., Xin, T.Z., Gunasagaran, S., Xiang, T.F.W., Yang, E.F.C., Jeyakumar, N., & Dhanaraj, S.A. (2010). J Saudi Chem Soc., 15, 113–120.http://dx.doi.org/10.1016/j.jscs.2010.06.004

Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H., & Varadarajan, P.V. (2006). Carbohydrate Research, 341, 2012. http://dx.doi.org/10.1016/j.carres.2006.04.042

Vorobyova, S.A., Lesnikovich, A.I., & Sobal, N.S. (1999). Colloids Surface, 152A, 375–379. http://dx.doi.org/10.1016/S0927-7757(98)00861-9

Wang, L., Chen, X., Zhan, J., Chai, Y., Yang, C., Xu, L., Zhuang, W., & Jing, B. (2005). J. Phys. Chem. B, 109, 3189-3194. http://dx.doi.org/10.1021/jp0449152

Willems & Wildenberg, V.d. (2005). Roadmap report on nanoparticles. W&W Espana sl, Barcelona, Spain.

Willner, B., Basnar, B., & Willner, B. (2007). FEBS J., 274, 302–309.http://dx.doi.org/10.1111/j.1742-4658.2006.05601.x

Yin, B., Ma, H., Wang, S., & Chen, S. (2003). J Phys Chem B, 107, 8898–8904.http://dx.doi.org/10.1021/jp026490u

Yu, d. G. (2007). Colloids Surface B, 59, 171–178.http://dx.doi.org/10.1016/j.colsurfb.2007.05.007

Zahir, A.A., & Rahuman, A.A. (2012). Vet. Parasitol., 187, 511–520.http://dx.doi.org/10.1016/j.vetpar.2012.02.001

Zayed, M.F., Eisa, W.H., & Shabaka, A.A. (2012). Spectrochim. Acta. A., 98, 423–428.http://dx.doi.org/10.1016/j.saa.2012.08.072

Zhang, L., Shen, Y.H., Xie, A.J., Li, S.K., Jin, B.K., & Zhang, Q.F. (2006). J Phys Chem B, 110, 6615–6620. http://dx.doi.org/10.1021/jp060220k

Downloads

Published

2015-03-30

How to Cite

Mohsin Khan, Mh Aftab, Varun Chauhan, & Jyotsna Kaushal. (2015). Antimicrobial Efficacy of Green Silver Nanoparticles and Potential Implications for Human Health and the Environment. Journal of Chemistry, Environmental Sciences and Its Applications, 1(2), 81–90. https://doi.org/10.15415/jce.2015.12008

Issue

Section

Articles