Antimicrobial Efficacy of Green Silver Nanoparticles and Potential Implications for Human Health and the Environment

  • Mohsin Khan School of Applied Sciences, Chitkara University, Patiala, Punjab (India)- 140401
  • Mh Aftab Triple Vaccine division, Central Research Institute, Kasauli, Solan (H.P.), India
  • Varun Chauhan School of Biotechnology, Shoolini University, Bajhol, Solan (H.P.), India
  • Jyotsna Kaushal School of Applied Sciences, Chitkara University, Patiala, Punjab (India)- 140401
Keywords: Nanotechnology, nanoparticles, medical applications, environment friendly, green synthesis

Abstract

The beginnings of the applications of nanotechnology in the field of health sciences took place in early 2000s. There is a wide range of application of nanoparticles and its uses are emerging rapidly. Nanoparticle synthesis is usually carried out by various physical and chemical methods using various hazardous and toxic chemicals which may have adverse effect in the medical applications. Nevertheless, green synthesis approaches of producing silver nanoparticles are an alternative source of conventional method and is cost effective, environment friendly, easily scaled up for large scale synthesis and in this method there is no need to exploit high pressure, energy, temperature and toxic chemicals as in case of chemical and physical method. In this review, we report, some of the major applications of green synthesis of silver nanoparticles.

References

[1] Ahmad, A., Mukherjee, P., Senapati, S., Mandal, d., Khan, M.I., Kumar, R., & Sastry, M. (2003). Colloids Surf. B, 28, 313. http://dx.doi.org/10.1016/S0927-7765(02)00174-1
[2] Alivisatos, A.P. (1996). J. Phys. Chem., 100(31), 13226–13239.http://dx.doi.org/10.1021/jp9535506
[3] Alivisatos, A.P. (1996). Science, 271, 933–937.http://dx.doi.org/10.1126/science.271.5251.933
[4] Arunachalam, R., dhana Singh, S., Kalimuthu, B., Uthirappan, M., Rose, C., & Mandal, A.B. (2012). Colloid. Surface B, 94, 226–230.http://dx.doi.org/10.1016/j.colsurfb.2012.01.040
[5] Bae, C.H., Nam, S.H., & Park, S.M. (2002). Appl. Surf. Sci., 197, 628–634.http://dx.doi.org/10.1016/S0169-4332(02)00430-0
[6] Balaprasad, A. (2005). Metal-Organic and Nano- Metal Chemistry, 35, 19.
[7] Bar, H., Bhui, d.K., Sahoo, G.P., Sarkar, P., de, S.P., & Misra, A. (2009). Colloids Surf A Physicochem Eng Asp, 339, 134–139. http://dx.doi.org/10.1016/j.colsurfa.2009.02.008
[8] Bhainsa, K.C., & d’Souza, S.F. (2006). Colloids and Surfaces B: Biointerfaces, 47, 160–164. http://dx.doi.org/10.1016/j.colsurfb.2005.11.026
[9] Bindhu, M.R., & Umadevi, M. (2013). Spectrochim. Acta. A., 101, 184–190.http://dx.doi.org/10.1016/j.saa.2012.09.031
[10] Boca, S.C., Potara, M., Gabudean, A.M., Juhem, A., Baldeck, P.L., & Astilean, S. (2011). Cancer Lett., 31, 131–140. http://dx.doi.org/10.1016/j.canlet.2011.06.022
[11] Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A.P. (1998). Science, 281, 2013–2016. http://dx.doi.org/10.1126/science.281.5385.2013
[12] Callegari, A., Tonti, d., & Chergui, M. (2003). Nano Lett., 3, 1565–1568http://dx.doi.org/10.1021/nl034757a
[13] Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Biotechnol Prog., 22, 577–583. http://dx.doi.org/10.1021/bp0501423
[14] Chaudhry, Q., & Castle, L. (2011). Trends Food Sci. Tech., 22, 595–603.http://dx.doi.org/10.1016/j.tifs.2011.01.001
[15] Chopra, I. (2007). J. Antimicrob Chemother., Apr; 59(4), 587.
[16] Coe, S., Woo, W.K., Bawendi, M., & Bulovic, V. (2002). Nature, 420, 800–803.http://dx.doi.org/10.1038/nature01217
[17] Crooks,. R.M., Lemon, B.I., Sun, L., Yeung, L.K., & Zhao, M. (2001). Top. Curr. Chem., 212, 82-135. http://dx.doi.org/10.1007/3-540-44924-8_3
[18] Cruz, D., Falé, P.L., Mourato, A., Vaz, P.d., Serralheiro, M.L., & Lino, A.R.L. (2010). Colloid. Surface B, 81, 67–73. http://dx.doi.org/10.1016/j.colsurfb.2010.06.025
[19] Dankovich, T.A., & Gray, D.G. (2011). Environ. Sci. Technol., 45, 1992–1998.http://dx.doi.org/10.1021/es103302t
[20] Das, J., Paul, d., & Velusamy, M.P. (2013). Spectrochim. Acta. A 104, 265–270.http://dx.doi.org/10.1016/j.saa.2012.11.075
[21] Dick, L. A., McFarland, A. d., Haynes, C. L., & Van Duyne, R. P. (2002). J. Phys. Chem. B., 106, 853-860. http://dx.doi.org/10.1021/jp013638l
[22] Dimitrijevic, N.M., Bartels, d.M., Jonah, C.d., Takahashi, K., & Rajh, T. (2001). J Phys Chem B, 105, 954–959. http://dx.doi.org/10.1021/jp0028296
[23] Dipankar, C., & Murugan, S. (2012). Colloid. Surface B, 98, 112–119.http://dx.doi.org/10.1016/j.colsurfb.2012.04.006
[24] Edison, T.J., & Sethuraman, M.G. (2013). Spectrochim. Acta. A., 104, 262–264.http://dx.doi.org/10.1016/j.saa.2012.11.084
[25] El-Sayed, M.A. (2001). Acc. Chem. Res., 34, 257-264.http://dx.doi.org/10.1021/ar960016n
[26] Fendler, J. H., & Meldrum, F. C. (1995). Advanced Materials, 7, 607-632.http://dx.doi.org/10.1002/adma.19950070703
[27] Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., & Kim, J.O. (2000). J Biomed Mater. Res., 52(4), 662.http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662::AId-JBM10>3.0.CO;2-3
[28] Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., & Jose- Yacaman, M. (2003). Langmuir, 19, 1357–1361. http://dx.doi.org/10.1021/la020835i
[29] Ghaffari-Moghaddam, M., & Hadi-dabanlou, R. (2014). J Indus Eng Chem, 20, 739–744. http://dx.doi.org/10.1016/j.jiec.2013.09.005
[30] Ghaffari-Moghaddam, M., Hadi-dabanlou, R., Khajeh, M., Rakhshanipour, M., & Shameli, K. (2014). Korean J Chem Eng, 31, 548–557.http://dx.doi.org/10.1007/s11814-014-0014-6
[31] Gittins, d.I., Bethell, d., Nichols, R.J., & Schiffrin, d.J. (2000). J. Mater. Chem., 10, 79–83. http://dx.doi.org/10.1039/a902960e
[32] Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E., & Baffa, O. (2011). Spectrochim. Acta. A, 82, 140–145. http://dx.doi.org/10.1016/j.saa.2011.07.024
[33] Hao, E., Kelly, K.L., Hupp, J.T., & Schatz, G.C. (2002). J. Am. Chem. Soc., 124, 15182-15183. http://dx.doi.org/10.1021/ja028336r
[34] Jagtap, U., & Bapa, V.A. (2013). Ind. Crop Prod., 46, 132–137.http://dx.doi.org/10.1016/j.indcrop.2013.01.019
[35] Jain, J., Arora, S., Rajwade, J.M., Omray, P., Khandelwal, S., & Paknikar, K.M. (2009).
[36] Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Science, 294, 1901-1903. http://dx.doi.org/10.1126/science.1066541
[37] Jin, R., Cao, Y.C., Hao, E., Metraux, G.S., Schatz, G.C., & Mirkin, C.A. (2003). Nature, 425, 487-490. http://dx.doi.org/10.1038/nature02020
[38] Karuppiah, M., & Rajmohan, R. (2013). Mater. Lett., 97, 141–143.http://dx.doi.org/10.1016/j.matlet.2013.01.087
[39] Keki, S., Torok, J. & Deak, G. et al. (2000). J. Colloid Interf. Sci., 229, 550–553.http://dx.doi.org/10.1006/jcis.2000.7011
[40] Kelly, F.M., & Johnston, J.H. (2011). ACS Appl. Mater. Interfaces, 3, 1083–1092.http://dx.doi.org/10.1021/am101224v
[41] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). J. Phys. Chem.B, 107, 668-677. http://dx.doi.org/10.1021/jp026731y
[42] Kim, J., Cha, S., Shin, K., Jho, J.Y., & Lee, J.C. (2004). Advanced Materials, 16, 459-464. http://dx.doi.org/10.1002/adma.200404906
[43] Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.G. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 13611. http://dx.doi.org/10.1073/pnas.96.24.13611
[44] Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.G. (2001). Trends Biotechnol., 19, 15. http://dx.doi.org/10.1016/S0167-7799(00)01514-6
[45] Kotakadi, V.S., Rao, Y.S., Gaddam, S.A., Prasad, T.N.V.K.V., Reddy, A.V., & Gopal, d.V.R.S. (2013). Colloid. Surface B, 105, 194–198.http://dx.doi.org/10.1016/j.colsurfb.2013.01.003
[46] Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S.K., & Paknikar, K.M. (2003). Nanotechnology, 14, 95. http://dx.doi.org/10.1088/0957-4484/14/1/321
[47] Krishnaraj, C., Jagan E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T., & Mohan, N. (2010). Colloids Surf B: Biointerfaces, 76, 50–56.http://dx.doi.org/10.1016/j.colsurfb.2009.10.008
[48] Liu, Y.C. & Lin, L.H. (2004). Electrochem. Commun., 6, 1163–1168.http://dx.doi.org/10.1016/j.elecom.2004.04.021
[49] Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. Advanced Materials, 13, 1501-1505.http://dx.doi.org/10.1002/1521-4095(200110)13:19<1501::AId-AdMA1501>3.0.CO;2-Z
[50] Mallick, K., Witcombb, M.J., & Scurrella, M.S. (2005). Mater. Chem. Phys., 90, 221–224. http://dx.doi.org/10.1016/j.matchemphys.2004.10.030
[51] Metraux, G. S., & Mirkin, C.A. (2005). Advanced Materials, 17, 412-415.http://dx.doi.org/10.1002/adma.200401086
[52] Mol. Pharm., 6, 1388–1401. http://dx.doi.org/10.1021/mp900056g
[53] Mukherjee, P., Ahmad, A., Mandal, d., Senapati, S., Sainkar, S.R., Khan, M.I., Parishcha, R., Ajaykumar, P.V., Alam, M., Kumar, R., & Sastry, M. (2001). Nano Lett., 1, 515.http://dx.doi.org/10.1021/nl0155274
[54] Murphy, C.J. (2008). J. Mater. Chem., 18, 2173–2176.http://dx.doi.org/10.1039/b717456j
[55] Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., & Kumar, d.S. (2010). Plant Sci., 179, 154–163. http://dx.doi.org/10.1016/j.plantsci.2010.04.012
[56] Niraimathi, K.L., Sudha, V., Lavanya, R., & Brindha, P. (2013). Colloid. Surface B, 102, 288–291. http://dx.doi.org/10.1016/j.colsurfb.2012.08.041
[57] Parashar, V., Parashar, R., Sharma, B., & Pandey, A.C. (2009). digest Journal of Nanomaterials and Biostructures, 4(1), 45-50.
[58] Pastoriza-Santos, I., & Liz-Marzon, L.M. (2002). Nano Lett., 2, 903-905.http://dx.doi.org/10.1021/nl025638i
[59] Pattabi, M., & Uchil, J. (2000). Solar Energ. Mater. Solar Cell, 63, 309–314.http://dx.doi.org/10.1016/S0927-0248(00)00050-7
[60] Petit, C., Lixon, P., & Pileni, M.P. (1993). J. Phys. Chem, 97, 12974–12983.http://dx.doi.org/10.1021/j100151a054
[61] Raja, K., Saravanakumar, A., & Vijayakumar, R. (2012). Spectrochim. Acta. A, 97, 490–494. http://dx.doi.org/10.1016/j.saa.2012.06.038
[62] Rajakumar, G., & Rahuman, A.A. (2012). Res. Vet. Sci., 93, 303–309.http://dx.doi.org/10.1016/j.rvsc.2011.08.001
[63] Raman, N., Sudharsan, S., Veerakumar, V., Pravin, N., & Vithiya, K. (2012). Spectrochim. Acta. A., 96, 1031–1037. http://dx.doi.org/10.1016/j.saa.2012.08.011
[64] Ravindran, T.R., Arora, A.K., Balamuragan, B., & Mehta, B.R. (1999). Nanostruct. Mater., 11 603–609. http://dx.doi.org/10.1016/S0965-9773(99)00346-3
[65] Roopan, S.M., Madhumitha, G.R., Rahuman, A., Kamaraj, A., Bharathi, C. A., & Surendra, T.V. (2013). Ind. Crop Prod., 43, 631–635.http://dx.doi.org/10.1016/j.indcrop.2012.08.013
[66] [1] Saifuddin, N., Wong, C.W., & Yasumira, A.N. (2009). E-Journal of Chemistry, 6(1), 61-70.
[67] Sandmann, G., Dietz, H., & Plieth, W. (2000). J. Electroanal. Chem., 491, 78–86.http://dx.doi.org/10.1016/S0022-0728(00)00301-6
[68] Sankar, R., Karthik, A., Prabu, A., Karthik, S., Shivashangari, K.S., & Ravikumar, V. (2013). Colloid. Surface B, 108, 80–84. http://dx.doi.org/10.1016/j.colsurfb.2013.02.033
[69] Santhoshkumar, T., Rahuman, A.A., Bagavan, A., Marimuthu, S., Jayaseelan, C., Kirthi, A.V., Kamaraj, C., Rajakumar, G., Zahir, A.A., Elango, G., Velayutham, K., Iyappan, M., Siva, C., Karthik, L., & Rao, K.V. (2012). Exp. Parasitol., 132, 156–165.http://dx.doi.org/10.1016/j.exppara.2012.06.009
[70] Sarma, T.K., & Chattopadhyay, A. (2004). Langmuir, 20, 3520-3524.http://dx.doi.org/10.1021/la049970g
[71] Sau, T.K., & Murphy, C.J. (2004). J. Am. Chem. Soc., 126, 8648-8649.http://dx.doi.org/10.1021/ja047846d
[72] Schultz, S., Smith, d.R., Mock, J.J., & Schultz, d.A. (2000). PNAS, 97, 996-1001.http://dx.doi.org/10.1073/pnas.97.3.996
[73] Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2005). Chem. Mater., 17, 566-572.http://dx.doi.org/10.1021/cm048292g
[74] Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Nat. Mater., 3, 482-488. http://dx.doi.org/10.1038/nmat1152
[75] Shao, Y., Jin, Y., & dong, S. (2004). Chem. Commun., 1104-1105.http://dx.doi.org/10.1039/b315732f
[76] Sharma, V.K., Yngard, R.A., & Lin., Y. (2009). Advanced Colloid Interface Sci., 145, 83–96. http://dx.doi.org/10.1016/j.cis.2008.09.002
[77] Shi, A.C., & Masel, R. I. (1989). J. Catal., 120, 421- 431.http://dx.doi.org/10.1016/0021-9517(89)90282-0
[78] Shiv Shankar, S., Ahmad, A., & Sastry, M. (2003). Biotechnol. Prog., 19, 627.
[79] Shiv Shankar, S., Rai, A., Ahmad, A., & Sastry, M. (2004). Journal of Colloid and Interface Science, 275, 496. http://dx.doi.org/10.1016/j.jcis.2004.03.003
[80] Shiv Shankar, S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Nature Materials, 3, 482. http://dx.doi.org/10.1038/nmat1152
[81] Smetana, A.B., Klabunde, K.J., & Sorensen, C.M. (2005). J. Colloid Interf. Sci., 284, 521–526. http://dx.doi.org/10.1016/j.jcis.2004.10.038
[82] Steven, R., Emory, W.E., Haskins, S., & Niel (1998). J.Am.Chem.Soc., 120, 8009.http://dx.doi.org/10.1021/ja9815677
[83] Sun, Y., Yin, Y., Mayers, B.T., Herricks, T., & Xia, Y. (2002). Chem Mater., 14, 4736–4745. http://dx.doi.org/10.1021/cm011548n
[84] Swami, A., Selvakannan, P.R., Pasricha, R., & Sastry, M. (2004). J Phys Chem B, 108, 19269. http://dx.doi.org/10.1021/jp0465581
[85] Tamuly, C., Hazarika, M., Borah, S.C., das, M.R., & Boruah, M.P. (2013). Colloid. Surface B, 102, 627–634. http://dx.doi.org/10.1016/j.colsurfb.2012.09.007
[86] Tan, Y., Wang, Y., & Jiang, L. et al. (2002). J. Colloid Interf. Sci., 249, 336–345.http://dx.doi.org/10.1006/jcis.2001.8166
[87] Valli, J.S., & Vaseeharan, B. (2012). Mater. Lett., 82, 171–173.http://dx.doi.org/10.1016/j.matlet.2012.05.040
[88] Vanaja, M., Gnanajobitha, G., Paulkumar, K., Rajeshkumar, S., Malarkodi, C., & Annadura, G. (2013). J. Nanostructure Chem., 3, 17. http://dx.doi.org/10.1186/2193-8865-3-17
[89] Veerasamy, R., Xin, T.Z., Gunasagaran, S., Xiang, T.F.W., Yang, E.F.C., Jeyakumar, N., & Dhanaraj, S.A. (2010). J Saudi Chem Soc., 15, 113–120.http://dx.doi.org/10.1016/j.jscs.2010.06.004
[90] Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H., & Varadarajan, P.V. (2006). Carbohydrate Research, 341, 2012. http://dx.doi.org/10.1016/j.carres.2006.04.042
[91] Vorobyova, S.A., Lesnikovich, A.I., & Sobal, N.S. (1999). Colloids Surface, 152A, 375–379. http://dx.doi.org/10.1016/S0927-7757(98)00861-9
[92] Wang, L., Chen, X., Zhan, J., Chai, Y., Yang, C., Xu, L., Zhuang, W., & Jing, B. (2005). J. Phys. Chem. B, 109, 3189-3194. http://dx.doi.org/10.1021/jp0449152
[93] Willems & Wildenberg, V.d. (2005). Roadmap report on nanoparticles. W&W Espana sl, Barcelona, Spain.
[94] Willner, B., Basnar, B., & Willner, B. (2007). FEBS J., 274, 302–309.http://dx.doi.org/10.1111/j.1742-4658.2006.05601.x
[95] Yin, B., Ma, H., Wang, S., & Chen, S. (2003). J Phys Chem B, 107, 8898–8904.http://dx.doi.org/10.1021/jp026490u
[96] Yu, d. G. (2007). Colloids Surface B, 59, 171–178.http://dx.doi.org/10.1016/j.colsurfb.2007.05.007
[97] Zahir, A.A., & Rahuman, A.A. (2012). Vet. Parasitol., 187, 511–520.http://dx.doi.org/10.1016/j.vetpar.2012.02.001
[98] Zayed, M.F., Eisa, W.H., & Shabaka, A.A. (2012). Spectrochim. Acta. A., 98, 423–428.http://dx.doi.org/10.1016/j.saa.2012.08.072
[99] Zhang, L., Shen, Y.H., Xie, A.J., Li, S.K., Jin, B.K., & Zhang, Q.F. (2006). J Phys Chem B, 110, 6615–6620. http://dx.doi.org/10.1021/jp060220k
Published
2015-03-30
How to Cite
Mohsin Khan, Mh Aftab, Varun Chauhan, & Jyotsna Kaushal. (2015). Antimicrobial Efficacy of Green Silver Nanoparticles and Potential Implications for Human Health and the Environment. Journal of Chemistry, Environmental Sciences and Its Applications, 1(2), 81-90. Retrieved from https://jce.chitkara.edu.in/index.php/jce/article/view/55
Section
Articles